
有 N 个妹子,每次随机约 1 个,求平均多少次才能把每个妹子都约到?
结果请保留 4 位小数。
写出 N∈[1,10]的结果
编程计算 N∈[1, 100000]的结果
1 zhidian 2017-04-26 22:51:08 +08:00 你没机会提交了,嗯……哈哈哈。 |
3 Vinty 2017-04-26 23:17:40 +08:00 |
4 xujinkai 2017-04-26 23:25:11 +08:00 via Android 这个有公式的 sigma N/i 好像 |
5 blankme 2017-04-26 23:27:41 +08:00 我怎么算出来是个发散的级数。。。 |
6 snnn 2017-04-27 00:13:43 +08:00 via Android 这叫奖券搜集问题 |
不能保证所有一定约到 只能保证概率 |
8 starvedcat 2017-04-27 01:15:55 +08:00 “约到”产生了歧义。。 |
10 irainsoft 2017-04-27 03:08:50 +08:00 还是换成抽奖吧,约妹子成功概率再高,现实情况也可能是很残酷的 |
11 Tunar 2017-04-27 07:25:30 +08:00 via Android 前提条件呢 |
12 yalanaika 2017-04-27 07:54:53 +08:00 约 <> 约到 这又不是小浣熊,每次都能给张卡的。 |
13 cloudzhou 2017-04-27 08:02:09 +08:00 f(n) = (1+2+3...+n)/(1*2*3*...*n) 迭代实现,1+2+3... 和 1*2*3 不用每次重复计算,可以使用上次计算结果 |
14 Ahri 2017-04-27 08:12:53 +08:00 Coupon collector's problem |
![]() | 15 cloudzhou 2017-04-27 08:13:32 +08:00 我的答案不对的,还没想好 |
16 Valyrian 2017-04-27 08:19:28 +08:00 约出第 1 个妹子的所需次数的期望是 1 约出第 2 个(不同)妹子所需次数的期望是 N/N-1,(因为每次概率是 N-1/N,几何分布) 约出第 3 个(不同)妹子所需次数的期望是 N/N-2 ... 约出第 N 个(不同)妹子所需次数的期望是 N/1 所有期望相加就是全约出来的期望 N*(调和级数前 N 项的和) |
19 inFinityzc 2017-04-27 14:08:54 +08:00 |
20 ipwx 2017-04-27 14:59:40 +08:00 递推公式: E[x(1)] = 1 E[x(k)] = (E[x(k-1)] + 1) * ((N-k+1)/N) + (E[x(k)] + 1) * ((k-1) / N) 整理: E[x(k)] = E[x(k-1)] + N/(N-k+1) 得到: E[x(N)] = N * sum(1/(N-k+1), k from 1 to N) 也就是 @Valyrian 的答案。 |
21 zsdroid 2017-04-27 15:26:37 +08:00 答案是 0,因为我没有妹子 |
22 xiaoyu233 2017-04-28 10:55:58 +08:00 via iPhone 答案是 0,因为我没有妹子 |
23 zero1234888 2017-04-28 11:55:58 +08:00 答案是 0,因为我没有妹子 |