V2EX huzhikuizainali 的所有回复 第 1 页 / 共 13 页
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
V2EX    huzhikuizainali    全部回复第 1 页 / 共 13 页
回复总数  243
1  2  3  4  5  6  7  8  9  10 ... 13  
@necomancer 请问你是不是想说 取 X=(0,1),E=[0.5,1)。则 E 在 X 上闭集,但是 E 在 R 上不是紧致。因此令 p=1 ,此时 p 不属于 E ,而 d(p,E)不大于 0 。

如果是这样,这里面有个问题。此时 E 只是相对 X 是闭集。E 相对 R 不是闭集。而距离函数是定义在 R 上的。对应 4.16 定理。显然函数 f 是定义在度量空间 X 上。因此用 X 上的相对闭集来挑战定义在 R 上的距离函数似乎并不合理。我结合公开课中前后文的意思,似乎老师也不是这么比较的。

我猜测老师的意思还是指 E 相对于某度量空间空间(比如度量空间 X)是闭集,而距离函数 d(p,E)=inf{d(p,q),q∈E},且该函数也是定义在度量空间 X 上。二者在同一空间的前提下,再回答 E 是闭集,d(p,E)还一定大于 0 的问题。

以上是我的猜测,如果你觉得哪里不对,还请指正!谢谢!
necomancer 谢谢你的回复。按照你的例子,E 在 X 上不是闭集啊! X 中的 1 作为 E 的极限点并不属于 E ,所以 E 不是 X 的相对闭集。

其次想在 k 维实数空间有界闭集,但不是紧集的例子也不可能实现吧?海涅博雷尔定理使得 k 维实空间下的闭有界集合都是紧集。
@Alex222222222222 多谢解答。我明白了。
话说这个网站的 markdown 究竟是哪种标准。我试了几种不同的 latex 标准都无法正常显示!
@necomancer 谢谢你的回复。我说一下我的想法,烦请你指出哪里错了。
1 ,而 U(c,η)又是包含在不断缩小的闭区间套[an,bn]中这句话我说的确实不对。
2 ,证明过程确实使用了闭区间套!但是闭区间套作为工具仅限于根据初始假设找到无界点 c 。找到点 c 以后,我认为闭区间套的任务就完成了。
3 ,当证明过程说出“因为函数 f 在点 c 连续”这句话时。根据连续函数局部有界性,函数在 U(c,η)有界>函数在点 c 有界。这与闭区间套推出在点 c 无界矛盾。证毕。
@Rang666 谢谢你的回复

筛选掉的不一定是有界的,至少有一个是无界的(证明第 4 行) U 是有界的不能证明 U 外面就是无界或有界的,----------同意你的说法。可以套用以上证明逻辑对每个闭区间套的“分支”进行证明。最终可以证明点 c1 ,c2 c3…………的邻域内都是有界的。最终证明[a,b]都是有界的。

只能证明 U 内部肯定是有界的,所以必须要有一个更小的区间在 U 里面达成矛盾,前面的证明只是说有这么一个 U 存在,但是不能说明 ab 能精确到 U 内部,所以要构建出来能达到 U 内部的-----------这个没理解你因果逻辑。为什么“只能……肯定是有界的” ,导出“所以……达成矛盾”?
@Rang666 U 是层层缩小的闭区间套筛选出来的“无界”区间,在 U(c,η)属于[a,b],同时 U(c,η)既有界又无界已经足够到处矛盾了吧?

我不太明白你说的“不代表有一个更小的 ab 区间能嵌在 u 内”的意思。----为什么要找一个更小的 ab 区间嵌在 u 内?这么做的目的是什么?

还有,似乎不需要“证明无限多个 u 一定能覆盖住最大的 ab 区间”,因为哪些被筛选掉的区间,已经是有界区间了!因此才被筛选掉

“u 有界也没法覆盖到 0 不是”。我不明白覆盖到 0 是什么意思?为什么要覆盖到 0 ?
@lance6716 回复三楼
函数在单点有界的条件其实比较弱,只需要在这一点极限存在:(数学分析新讲第一册 p96 )
https://s21.ax1x.com/2025/01/08/pECFsYQ.png

因此如果在某点连续,那必然极限存在。因此也连续(数学分析新讲第一册 P106 )
https://s21.ax1x.com/2025/01/08/pECk3n0.png

在以上定理引理基础上,书中证明区间连续的函数必有界,使用了闭区间套逐渐缩小的方式和反证法思路。(下面两图出自数学分析新讲第一册 P114 )
我的疑问就是受这个证明的启发产生的。我不用闭区间套逐渐缩小。我直接用反证法假设函数 f 在[a,b]上任意一点 x0 处无界,那么直接与 P106 定理一矛盾.因为 x0 的任意性,所以 f 在[a,b]上有界。------------书中之所以没用这么简单的反证法,而采用缩小闭区间到一点的方法。说明我的思路是错的(逻辑严谨性有问题或有其他错误)。我想知道我错在哪里了。
https://s21.ax1x.com/2025/01/08/pECFVJJ.png
https://s21.ax1x.com/2025/01/08/pECkg4e.png
@lance6716
如果函数 f 在 X0 点连续,那么它在该点邻近是有界的 . 这是一 个局部性质对于在闭区间连续的函数,我们来讨论相应的整体性质《数学分析新讲》第一册 第三章,第二节 2.b

而且我说的不是“函数在某个点上有界”。我说的是在某点连续的函数在该点“邻域”有界。
@halfdb 谢谢你的解答。为了验证一下我是否真的理解你的回答。我再叙述一下,请你看看我是否准确的理解了你的回答?

α<γ<β 推出 γ∈J-------------这个结论是无需证明的!因为这是命题给出的条件“介于α和β之间的任何实数γ也一定属于 J”。是证明的起点!

这个证明的思路是利用“命题条件”+“确界定义”。来说明“任意” γ∈(A,B)这个 “有前提条件” 的γ也属于 J ,目的是推出(A,B)J 的结论。
@Alex222222222222
这个例子太棒了。无界量是“存在”函数值大于任给的 M 。而无穷大量要求进入去心邻域后,所有函数值都大于任给的 M 。因此 G 是无界量,但不是无穷大量。
请问你是怎么想到这个例子的?
@Alex222222222222
我明白 x_0 是下标的意思。但是下面这段内容你想说明什么?我没太理解。
f(x) = 1/|x|, if x neq 0, f(0) =0, x_0 = 0
@Alex222222222222 谢谢你的回复。
有点没看懂。
1 、x_0 = 0 ------------这个 x_0 是什么?
2 、g(x) = 1|x|-----------这个确定 g(x) = 1|x|?而不是 g(x) = 1/|x|
3 、外国教材的翻译教材------有什么推荐的么?
@Alex222222222222 同意你的说法。
现在的难点在于除了苏德矿微积分。我没有在其他地方找到“无界量”的定义。包括维基百科。数学英汉词典。因此也不知道这个概念的英文专用名词是什么?
@Alex222222222222
关键这两个概念 “分别” 有相反的概念。无穷大量<-->无穷小量 无界量<-->有界量 而且有个性质:有界量*无穷小量=无穷小量

据此推断,无穷大量与无界量应该是不同的概念吧?因为有界量与无穷小量显然是不同的概念!
@Alex222222222222
那么如果仅以苏德矿微积分的截图来看。无界量和无穷大量有区别么?虽然,一个是“存在”,一个是“总存在”。但是似乎没有区别啊!
@Alex222222222222
“第一个你的理解是对的。虽然并不清楚你想问什么。”,其实我只有一个问题,问题是“ 无穷大量与无界量、无界函数三者之间究竟有什么区别?”

在主贴黑体字“问题”后面是通过对《华东师范大学数分》 p65 页例子的讨论来阐述我的困惑。不知道我这么解释是否让问题更清楚了。如果你觉得哪里不清楚,请告诉我,我再补充!
@Alex222222222222 谢谢你的回复
请问“ 我个人对于无穷大量和无界函数的理解是,无界函数的条件是 globally 的,是作用在整个定义域上的。无穷大量是 locally 的,可以理解为是作用在一个点上的。”请问你的理解是建立在我问题中引用的“课本截图”之上的么?
@baraja 谢谢回复
1 、在“本地计算机证书”查不到“cloudflare-dns.com ”的证书。这要怎么才能安全的安装这个证书?
2 、关于“不要直接用 1111 和 1001” a 、在 chrome 中设置的 dns “Cloudflare”看不到他的 ip 。虽然它里面写的 1.1.1.1 但是这也可能是产品名吧?那么要怎样才知道 chrome 的 DNS 设置完 cloudflare 后,真实启用的 dns IP 地址是多少? 我之所有这个怀疑,是因为今天 chrome 可以正常打开国内网站了!所以我猜测 chrome 里开启 cloudflare 后他会不定期更换使用的 DNS 。

3 、如果 chrome 中启用了 cloudflare 的 dns ,同时在网络连接的 TCP/IP 协议中设置了其他 dns 服务器。那么当使用 chrome 访问网络时究竟是哪个 DNS 在起作用?为什么?
@dwdh
Chrome 设置--隐私和安全--安全---使用安全 DNS---选择 DNS 提供商 Cloudflare(1.1.1.1)

在浏览器设置以后还是可以正常打开网页,第一次打开有点慢。这样设置以后很多过去打不开的网页都可以打开了。但是被重点关照的网站还是打不开。现在 1.1.1.1/help 链接也可打开

wireshark 抓 DNS 确实看不到发出真实访问的域名。但是能看到链接 Cloudfare
361 天前
回复了 huzhikuizainali 创建的主题 DNS Chrome DOH 设置的诡异现象如何解决?
2024-07-07 10:23:13 +08:00
回复了 huzhikuizainali 创建的主题 UNITY 当我用 Unity 开发游戏的时候有什么场景下要使用“栈”操作?
@nightwitch 谢谢回复!
请问你说的场景组织结构,组件是什么?可否从产品的角度举个具体的例子。比如王者荣耀或者星际争霸或者暗黑破坏神……
1  2  3  4  5  6  7  8  9  10 ... 13  
关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     1127 人在线   最高记录 6679       Select Language
创意工作者们的社区
World is powered by solitude
VERSION: 3.9.8.5 21ms UTC 17:29 PVG 01:29 LAX 10:29 JFK 13:29
Do have faith in what you're doing.
ubao snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86