V2EX huzhikuizainali
huzhikuizainali

huzhikuizainali

V2EX 第 522912 号会员,加入于 2020-12-08 16:59:52 +08:00
有没有 latex 的在线版本转换工具?
数学    huzhikuizainali    260 天前    最后回复来自 guyeu
1
huzhikuizainali 最近回复了
@necomancer 请问你是不是想说 取 X=(0,1),E=[0.5,1)。则 E 在 X 上闭集,但是 E 在 R 上不是紧致。因此令 p=1 ,此时 p 不属于 E ,而 d(p,E)不大于 0 。

如果是这样,这里面有个问题。此时 E 只是相对 X 是闭集。E 相对 R 不是闭集。而距离函数是定义在 R 上的。对应 4.16 定理。显然函数 f 是定义在度量空间 X 上。因此用 X 上的相对闭集来挑战定义在 R 上的距离函数似乎并不合理。我结合公开课中前后文的意思,似乎老师也不是这么比较的。

我猜测老师的意思还是指 E 相对于某度量空间空间(比如度量空间 X)是闭集,而距离函数 d(p,E)=inf{d(p,q),q∈E},且该函数也是定义在度量空间 X 上。二者在同一空间的前提下,再回答 E 是闭集,d(p,E)还一定大于 0 的问题。

以上是我的猜测,如果你觉得哪里不对,还请指正!谢谢!
@necomancer 谢谢你的回复。按照你的例子,E 在 X 上不是闭集啊! X 中的 1 作为 E 的极限点并不属于 E ,所以 E 不是 X 的相对闭集。

其次想在 k 维实数空间有界闭集,但不是紧集的例子也不可能实现吧?海涅博雷尔定理使得 k 维实空间下的闭有界集合都是紧集。
@Alex222222222222 多谢解答。我明白了。
话说这个网站的 markdown 究竟是哪种标准。我试了几种不同的 latex 标准都无法正常显示!
@necomancer 谢谢你的回复。我说一下我的想法,烦请你指出哪里错了。
1 ,而 U(c,η)又是包含在不断缩小的闭区间套[an,bn]中这句话我说的确实不对。
2 ,证明过程确实使用了闭区间套!但是闭区间套作为工具仅限于根据初始假设找到无界点 c 。找到点 c 以后,我认为闭区间套的任务就完成了。
3 ,当证明过程说出“因为函数 f 在点 c 连续”这句话时。根据连续函数局部有界性,函数在 U(c,η)有界>函数在点 c 有界。这与闭区间套推出在点 c 无界矛盾。证毕。
@Rang666 谢谢你的回复

筛选掉的不一定是有界的,至少有一个是无界的(证明第 4 行) U 是有界的不能证明 U 外面就是无界或有界的,----------同意你的说法。可以套用以上证明逻辑对每个闭区间套的“分支”进行证明。最终可以证明点 c1 ,c2 c3…………的邻域内都是有界的。最终证明[a,b]都是有界的。

只能证明 U 内部肯定是有界的,所以必须要有一个更小的区间在 U 里面达成矛盾,前面的证明只是说有这么一个 U 存在,但是不能说明 ab 能精确到 U 内部,所以要构建出来能达到 U 内部的-----------这个没理解你因果逻辑。为什么“只能……肯定是有界的” ,导出“所以……达成矛盾”?
@Rang666 U 是层层缩小的闭区间套筛选出来的“无界”区间,在 U(c,η)属于[a,b],同时 U(c,η)既有界又无界已经足够到处矛盾了吧?

我不太明白你说的“不代表有一个更小的 ab 区间能嵌在 u 内”的意思。----为什么要找一个更小的 ab 区间嵌在 u 内?这么做的目的是什么?

还有,似乎不需要“证明无限多个 u 一定能覆盖住最大的 ab 区间”,因为哪些被筛选掉的区间,已经是有界区间了!因此才被筛选掉

“u 有界也没法覆盖到 0 不是”。我不明白覆盖到 0 是什么意思?为什么要覆盖到 0 ?
@lance6716 回复三楼
函数在单点有界的条件其实比较弱,只需要在这一点极限存在:(数学分析新讲第一册 p96 )
https://s21.ax1x.com/2025/01/08/pECFsYQ.png

因此如果在某点连续,那必然极限存在。因此也连续(数学分析新讲第一册 P106 )
https://s21.ax1x.com/2025/01/08/pECk3n0.png

在以上定理引理基础上,书中证明区间连续的函数必有界,使用了闭区间套逐渐缩小的方式和反证法思路。(下面两图出自数学分析新讲第一册 P114 )
我的疑问就是受这个证明的启发产生的。我不用闭区间套逐渐缩小。我直接用反证法假设函数 f 在[a,b]上任意一点 x0 处无界,那么直接与 P106 定理一矛盾.因为 x0 的任意性,所以 f 在[a,b]上有界。------------书中之所以没用这么简单的反证法,而采用缩小闭区间到一点的方法。说明我的思路是错的(逻辑严谨性有问题或有其他错误)。我想知道我错在哪里了。
https://s21.ax1x.com/2025/01/08/pECFVJJ.png
https://s21.ax1x.com/2025/01/08/pECkg4e.png
@lance6716
如果函数 f 在 X0 点连续,那么它在该点邻近是有界的 . 这是一 个局部性质对于在闭区间连续的函数,我们来讨论相应的整体性质《数学分析新讲》第一册 第三章,第二节 2.b

而且我说的不是“函数在某个点上有界”。我说的是在某点连续的函数在该点“邻域”有界。
@halfdb 谢谢你的解答。为了验证一下我是否真的理解你的回答。我再叙述一下,请你看看我是否准确的理解了你的回答?

α<γ<β 推出 γ∈J-------------这个结论是无需证明的!因为这是命题给出的条件“介于α和β之间的任何实数γ也一定属于 J”。是证明的起点!

这个证明的思路是利用“命题条件”+“确界定义”。来说明“任意” γ∈(A,B)这个 “有前提条件” 的γ也属于 J ,目的是推出(A,B)J 的结论。
@Alex222222222222
这个例子太棒了。无界量是“存在”函数值大于任给的 M 。而无穷大量要求进入去心邻域后,所有函数值都大于任给的 M 。因此 G 是无界量,但不是无穷大量。
请问你是怎么想到这个例子的?
关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     2810 人在线   最高记录 6679       Select Language
创意工作者们的社区
World is powered by solitude
VERSION: 3.9.8.5 18ms UTC 13:30 PVG 21:30 LAX 06:30 JFK 09:30
Do have faith in what you're doing.
ubao snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86