[UVA][DP] 11598 - Optimal Segments@Morris' Blog|PChome Online 人新台
2014-03-02 18:52:11| 人1,353| 回0 | 上一篇 | 下一篇

[UVA][DP] 11598 - Optimal Segments

0 收藏 0 0 站台

 


C

Optimal Segments

Input: Standard Input

Output: Standard Output

 

Consider a grid of size 1 x N. Each cell of the grid has the following properties

         Cell C of the grid has a value of VC (1 C N)

         The value of each cell is a positive integer less than 26

         Some of the cells are special and they are represented with the character X

         Cell C has a weight of (two to the power of cell value)

         The special cells have weights of 1

You will be given the values of these N cells and your job will be to divide these into K segments so that

         Each segment contains at least one cell

         There is at least one special cell in each segment

The weight of a segment is equal to the product of the weights of the cells it contains. You have to form segments in such a way so that ratio

(Highest weight of all the segments) / (Lowest weight of all the segments) is minimized.

In case there are multiple answers with the same lowest ratio, you have to make sure the number of cells in the first segment is maximized. If there is still a tie, then make sure the number of cells in the second segment is maximized and so on.

 

Example:

N = 5 and K = 2
Cell values = {1 2 X 3 X }
Cell weights = {2 4 1 8 1}
Optimal segmentation = (2 4 1)(8 1)
Weights of segments = (8)(8)
Ratio = 1
Final Result = (1 2 X)(3 X)

 

Input

The first line of input is an integer T(T 200) that indicates the number of test cases. Each case starts with two integers N(1 < N < 31) and K(1 < K < 16). The meaning of N and K are mentioned above. The next line contains N integers where the Ith integer gives the value of VI. The integers that are special will be represented by X.

 

Output

For each case, output the case number first. If there is no way to divide the N cells into K segments, meeting the constraints above, then print “not possible!” If there is a way but the ratio is greater than 1015 then print “overflow”. If the ratio is not greater than 1015 then output the ratio first followed by the segmentations. Each segment is enclosed by brackets. Look at the output for detailed format.

 

 

 

 

 

 

Sample Input                            Output for Sample Input

4

5 2

1 2 X 3 X

6 3

X X 2 3 4 5

10 3

X X X 25 25 25 25 25 25 25

10 3

4 X 3 1 X 3 X X 3 2

Case 1: 1 (1 2 X)(3 X)

Case 2: not possible!

Case 3: overflow

Case 4: 8 (4 X 3)(1 X 3 X)(X 3 2)


Problemsetter: Sohel Hafiz

Special Thanks: Md. Arifuzzaman Arif

目描述:

N 字分成 K 段,每一段都要包含一 X。

求分段後,抓每一段的最大值 - 最小值最小化 (最小化最大差)

最後要出解的分法,按照字典序,越左的段越多越好。

目解法:

dp[i][j][k] 前 i ,切成 j 段,其中最小值 k 的最小最大值何。

最麻就是出解法了,字典序搞了好久才找到出的方法。

#include <stdio.h>
#include <string.h>
#include <set>
#include <vector>
#include <algorithm>
using namespace std;
int V[35], N, K;
int dp[31][16][30*26 + 5]; // [i-th][segment_count][min_value]
int ac_dp[31][16][30*26 + 5];
void solve() {
    int i, j, k, prev;
    int sum[35] =  {}, sumX[35] = {}, nextX[35] = {};
    for(i = 1; i <= N; i++) {
        sum[i] = sum[i-1] + V[i];
        sumX[i] = sumX[i-1] + (V[i] == 0);
    }
    for(i = N, prev = N+1; i >= 0; i--) {
        nextX[i] = prev;
        if(V[i] == 0)
            prev = i;
    }
    if(sumX[N] < K) {
        puts("not possible!");
        return ;
    }
    set<int> R[31][16];
    dp[0][0][0] = 0, R[0][0].insert(0);
    for(i = 0; i < N; i++) {
        for(j = 0; j < K; j++) {
            for(set<int>::iterator it = R[i][j].begin();
                it != R[i][j].end(); it++) {
                for(k = nextX[i]; k <= N; k++) {
                    int s = sum[k] - sum[i];
                    int mn = min(*it, s), mx = max(dp[i][j][*it], s);
                    if(i == 0)    mn = mx = s;
                    if(R[k][j+1].find(mn) == R[k][j+1].end())
                        R[k][j+1].insert(mn), dp[k][j+1][mn] = 0xfffffff, ac_dp[k][j+1][mn] = 0;
                    dp[k][j+1][mn] = min(dp[k][j+1][mn], mx);
                }
            }
        }
    }
    int ret = 0xfffffff;
    for(set<int>::iterator it = R[N][K].begin();
        it != R[N][K].end(); it++)  {
        ret = min(ret, dp[N][K][*it] - *it);
    }
    if(ret >= 50) {
        puts("overflow");
        return;
    }
    printf("%lld ", 1LL<<ret);
    vector< pair<int, int> > P;
    for(set<int>::iterator it = R[N][K].begin();
        it != R[N][K].end(); it++)  {
        if(ret == dp[N][K][*it] - *it) {
            ac_dp[N][K][*it] = 1;
            P.push_back(make_pair(*it, dp[N][K][*it]));
        }
    }   
    for(i = N; i >= 0; i--) {
        for(j = 0; j < K; j++) {
            for(set<int>::iterator it = R[i][j].begin();
                it != R[i][j].end(); it++) {
                for(k = nextX[i]; k <= N; k++) {
                    int s = sum[k] - sum[i];
                    int mn = min(*it, s), mx = max(dp[i][j][*it], s);
                    if(i == 0)    mn = mx = s;
                    if(ac_dp[k][j+1][mn]) {
                        int ok = 0;
                        for(int p = 0; p < P.size(); p++) {
                            if(*it >= P[p].first && dp[i][j][*it] <= P[p].second)
                                ok = 1;
                        }
                        if(ok) {
                            ac_dp[i][j][*it] = ok;
            &nbp;               break;
                        }
                    }
                }
            }
        }
    }
    int idx = 0, idx_mn = 0;
    for(int seg = 0; seg < K; seg++) {
        for(j = N; j >= idx; j--) {
            if(sumX[j] - sumX[idx] == 0)
                continue;
            int s = sum[j] - sum[idx];
            int mn = min(idx_mn, s), mx = max(dp[idx][seg][idx_mn], s);
            if(idx == 0)    mn = mx = s;
            if(ac_dp[j][seg+1][mn]) {
                putchar('(');
                for(k = idx+1; k <= j; k++) {
                    if(V[k])
                        printf("%d", V[k]);
                    else
                        printf("X");
                    printf("%c", k == j ? ')' : ' ');
                }
                idx = j, idx_mn = mn;
                break;   
            }
        }
    }
    puts("");
}
int main() {
    int testcase, cases = 0;
    int i, j, k;
    scanf("%d", &testcase);
    while(testcase--) {
        scanf("%d %d", &N, &K);
        for(i = 1; i <= N; i++) {
            char s[10];
            scanf("%s", s);
            if(s[0] == 'X')
                V[i] = 0;
            else
                sscanf(s, "%d", &V[i]);
        }
        printf("Case %d: ", ++cases);
        solve();
    }
    return 0;
}
/*
1000
20 6
X 3 7 X 2 4 6 3 X 6 9 4 X X 4 7 X X 5 6
20 12
X X 2 X 7 2 X X X X 1 X X 9 X X X X 4 X
*/

台: Morris
人(1,353) | 回(0)| 推 (0)| 收藏 (0)|
全站分: 教育(修、留、研究、教育概) | 人分: UVA |
此分下一篇:[UVA][DP] 11617 - An Odd Love
此分上一篇:[UVA][矩] 11675 - Happy Friends

是 (若未登入"人新台"看不到回覆唷!)
* 入:
入片中算式的果(可能0) 
(有*必填)
TOP
全文
ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86