[UVA][][JAVA] 100 - The 3n + 1 problem@Morris' Blog|PChome Online 人新台
2013-03-22 09:16:25| 人1,955| 回0 | 上一篇 | 下一篇

[UVA][][JAVA] 100 - The 3n + 1 problem

0 收藏 0 0 站台


 The 3n + 1 problem 

Background

Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.

The Problem

Consider the following algorithm:

 1. input n 

2. print n

3. if n = 1 then STOP

4. if n is odd then tex2html_wrap_inline44

5. else tex2html_wrap_inline46

6. GOTO 2

Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)

Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.

For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.

The Input

The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0.

You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j.

You can assume that no operation overflows a 32-bit integer.

The Output

For each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle lengh (on the same line).

Sample Input

1 10 100 200 201 210 900 1000 

Sample Output

1 10 20 100 200 125 201 210 89 900 1000 174

的精神之前已了。

[][技巧深入] 100 - The 3n + 1 problem


public class Main {
public static short[] dp = new short[1000005];
public static final int SIZE = 1024;
public static short[] p = new short[SIZE];

public static short dp_build(long n) {
if (n > 1000000) {
short cnt = 0;
while (n > 1000000) {
if ((n & 1) != 0)
n = n * 3 + 1;
else
n = n / 2;
cnt++;
}
cnt += dp_build(n);
return cnt;
}
if (dp[(int) n] != 0)
return dp[(int) n];
if (n % 2 == 0)
dp[(int) n] = (short) (dp_build(n / 2) + 1);
else
dp[(int) n] = (short) (dp_build(3 * n + 1) + 1);
return dp[(int) n];
}

public static int query_p(int x, int y) {
int ans = 0;
while (x % SIZE != 0 && x <= y) {
ans = Math.max(ans, dp[x]);
x++;
}
while ((y + 1) % SIZE != 0 && x <= y) {
ans = Math.max(ans, dp[y]);
y--;
}
if (x > y)
return ans;
x /= SIZE;
y /= SIZE;
while (x <= y) {
ans = Math.max(ans, p[x]);
x++;
}
return ans;
}

public static int parseInt() {
int x = 0, c, neg;
try {
while ((c = System.in.read()) < '-') {
if (c == -1)
System.exit(0);
}
neg = (c == '-') ? -1 : 1;
x = neg == 1 ? c - '0' : 0;
while ((c = System.in.read()) >= '0') {
x = x * 10 + c - '0';
}
} catch (Exception e) {
}
return x;
}

public static void main(String[] args) {
int a, b, i;
dp[1] = 1;
for (i = 2; i <= 1000000; i++)
dp[i] = dp_build(i);
for (i = 0; i <= 1000000; i++)
p[i / SIZE] = (short) Math.max(p[i / SIZE], dp[i]);
while (true) {
try {
a = parseInt();
b = parseInt();
System.out.print(a + " " + b + " ");
if (a > b) {
i = a;
a = b;
b = i;
}
System.out.println(query_p(a, b));
} catch (Exception e) {
System.exit(0);
}
}
}
}

台: Morris
人(1,955) | 回(0)| 推 (0)| 收藏 (0)|
全站分: 不分 | 人分: UVA |
此分下一篇:[UVA][四分][操作] 11992 - Fast Matrix Operations
此分上一篇:[UVA][表] 11922 - Permutation Transformer

是 (若未登入"人新台"看不到回覆唷!)
* 入:
入片中算式的果(可能0) 
(有*必填)
TOP
全文
ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86