[性代][作] Gram Schmidt Process@Morris' Blog|PChome Online 人新台
2013-01-10 22:51:54| 人2,250| 回0 | 上一篇 | 下一篇

[性代][作] Gram Schmidt Process

0 收藏 0 0 站台

Linear Algebra: Programing Homework3

2012/12/20

 

 

 

 

  目:定向量,使用向量行Gram Schmidt Process,用以取得互相正交的向量集合

 

 

 

加分件:若可以算出orthonormal的向量集合,即可加10分。

 

  入:名input.txt的案,容:

                    第一列          (1)每向量的elementM

(2)向量的N ( 0<N<=M)

                    第二 ~ N+1列 : 每列分是拿做 Gram Schmidt Process的向量

 

  出:名output.txt的案,容:

(1).   NGram Schmidt Process之後算出的向量

(2).   Northonormal的向量(加分)

 

注意:入及出每一列的每值皆以一TAB做分隔

 

 

收件:1/10 24:00以前(未避免路壅塞,早上,不接受交

 

 

分明:

1.    一案例(下述案例)行正,60

 

2.    案例()行正,80

 

3.    三案例()行正,100

 

4.    避免因浮算造成的差,的算程中不出限小,四五入至小第二位。

若程中以分算表示果,助教斟酌加分。

抄者方以零分算。


案例1



 

入例

  名:input.txt

案容:

2    2

1    1

2    1

 

出例

  名:output.txt

案容:

othorgonal vectors:

1    1

1 /2   -1/2

 

案例2   

 

入例

  名:input.txt

案容:

3    3

1    0    1

2    1    4

3    1    6

 

出例

  名:output.txt

案容:

othorgonal vectors:

1    0    1

-1    1    1

-1/6  -1/3  1/6

 

案例3   

 

入例

  名:input.txt

案容:

4    3

1    0    0    0

0    0    1    1

0    1    1    1

 

出例

  名:output.txt

案容:

othorgonal vectors:

 

1    0    0    0

0    0    1    1

0    1    0    0



先不考大的入,然後了完成加分,在此稍做出格式的修改。

然後助教有定入的型,特之後居然有可能有浮。


#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <vector>
#include <iostream>
#define LL long long
using namespace std;
class Frac {
    public:
        LL a, b;
        Frac() {
            a = 0, b = 1;
        }
        Frac(LL x, LL y) {
            a = x, b = y;
            reduce();
        }
        Frac operator+(const Frac &y) {
            LL ta, tb;
            tb = this->b/gcd(this->b, y.b)*y.b;
            ta = this->a*(tb/this->b) + y.a*(tb/y.b);
            Frac z(ta, tb);
            return z;
        }
        Frac operator-(const Frac &y) {
            LL ta, tb;
            tb = this->b/gcd(this->b, y.b)*y.b;
            ta = this->a*(tb/this->b) - y.a*(tb/y.b);
            Frac z(ta, tb);
            return z;
        }
        Frac operator*(const Frac &y) {
            LL tx, ty, tz, tw, g;
            tx = this->a, ty = y.b;
            g = gcd(tx, ty), tx /= g, ty /= g;
            tz = this->b, tw = y.a;
            g = gcd(tz, tw), tz /= g, tw /= g;
            Frac z(tx*tw, ty*tz);
            return z;
        }
        Frac operator/(const Frac &y) {
            LL tx, ty, tz, tw, g;
            tx = this->a, ty = y.a;
            g = gcd(tx, ty), tx /= g, ty /= g;
            tz = this->b, tw = y.b;
            g = gcd(tz, tw), tz /= g, tw /= g;
            Frac z(tx*tw, ty*tz);
            return z;
        }
        void print() {
            printf("%lld", a);
            if(b != 1)
                printf("/%lld", b);
        }
    private:
        static LL gcd(LL x, LL y) {
            if(!y)  return x;
            if(x < 0)   x *= -1;
            if(y < 0)   y *= -1;
            LL t;
            while(x%y)
                t = x, x = y, y = t%y;
            return y;
        }
        void reduce() {
            LL g = gcd(a, b);
            a /= g, b /= g;
            if(b < 0)   a *= -1, b *= -1;
        }
};
Frac norm_square(vector<Frac>& v) {
    Frac sum(0,1);
    for(vector<Frac>::iterator it = v.begin();
        it != v.end(); it++) {
        sum = sum + (*it)*(*it);
    }
    return sum;
}
Frac inner_product(vector<Frac>& a, vector<Frac>& b) {
    if(a.size() != b.size()) {
        puts("error");
        return Frac(0,1);
    }
    Frac res(0,1);
    for(int i = 0; i < a.size(); i++)
        res = res + a[i]*b[i]; // standard inner product
    return res;
}
void floatSol(vector<double> v[], int M, int N) {
    int i, j, k;
    puts("<float expression>");
    puts("othorgonal vectors:");
    for(i = 0; i < N; i++) {
        double v_2, inner_res, K;
        for(j = 0; j < i; j++) {
            for(k = 0, v_2 = 0; k < M; k++)
                v_2 += v[j][k]*v[j][k];
            for(k = 0, inner_res = 0; k < M; k++)
                inner_res += v[i][k]*v[j][k];
            K = inner_res / v_2; // ||v[i]|| length of vi
            for(k = 0; k < M; k++)
                v[i][k] = v[i][k] - K*v[j][k];
        }
     nbsp;  for(k = 0, v_2 = 0; k < M; k++)
            v_2 += v[j][k]*v[j][k];
        if(fabs(v_2) < 1e-6)  continue;
        for(j = 0; j < M; j++) {
            if(j)   putchar(' ');
            cout << v[i][j];
        }
        puts("");
    }
    // orthonormal vector process
    puts("\northonormal vectors:");
    for(i = 0; i < N; i++) {
        double v_2;
        for(j = 0, v_2 = 0; j < M; j++)
            v_2 += v[i][j]*v[i][j];
        v_2 = sqrt(v_2);
        if(fabs(v_2) < 1e-6)
            continue;
        for(j = 0; j < M; j++) {
            if(j)   putchar(' ');
            cout << v[i][j]/v_2;
        }
        puts("");
    }
}
void FracSol(vector<Frac> v[], int M, int N) {
    int i, j, k;
    puts("<fraction expression>");
    puts("othorgonal vectors:");
        for(i = 0; i < N; i++) {
        Frac v_2, inner_res, K;
        for(j = 0; j < i; j++) {
            v_2 = norm_square(v[j]);
            inner_res = inner_product(v[i], v[j]);
            K = inner_res / v_2; // ||v[i]|| length of vi
            for(k = 0; k < M; k++)
                v[i][k] = v[i][k] - K*v[j][k];
        }
        v_2 = norm_square(v[i]);
        if(v_2.a == 0)  continue;
        for(j = 0; j < M; j++) {
            if(j)   putchar(' ');
            v[i][j].print();
        }
        puts("");
    }
    // orthonormal vector process
    puts("\northonormal vectors:");
    for(i = 0; i < N; i++) {
        Frac sq;
        sq = norm_square(v[i]);
        if(sq.a == 0)   continue;
        for(j = 0; j < M; j++) {
            Frac res(v[i][j].a, v[i][j].b*sq.a), K(1,1);
            long long tmp = sq.a*sq.b, sqt = sqrt(tmp); // _/tmp
            for(k = 2; k <= sqt && k*k <= tmp; k++) {
                while(tmp%(k*k) == 0) {
                    tmp /= k*k;
                    K = K * Frac(k, 1);
                }
            }
            res = res * K;
            if(j)   putchar(' ');
            if(tmp != 1 && (res.a == 1 || res.a == -1)) {
                if(res.a < 0)   putchar('-');
            } else    printf("%lld", res.a);
            if(tmp != 1 && res.a)    printf("_/%lld", tmp);
            if(res.b != 1)  printf("/%lld", res.b);
        }
        puts("");
    }
}
double parseDouble(char s[]) {
    double d;
    sscanf(s, "%lf", &d);
    return d;
}
Frac parseFrac(char s[]) {
    LL i, j, cnt = 0;
    for(i = 0; s[i]; i++)
        if(s[i] == '.') break;
    if(s[i] == '.') {
        for(i++; s[i]; i++) {
            s[i-1] = s[i];
            cnt++;
        }
        s[i-1] = '\0';
        sscanf(s, "%lld", &i);
        j = 1;
        while(cnt) {
            j *= 10;
            cnt--;
        }
    } else {
        sscanf(s, "%lld", &i);
        j = 1;
    }
    return Frac(i, j);
}
int main() {
    int M, N, i, j, k, x;
    char cmd[128];
    freopen("input.txt", "r+t", stdin);
    freopen("output.txt", "w+t", stdout);
    while(scanf("%d %d", &M, &N) == 2) {
        vector<Frac> v1[N];
        vector<double> v2[N];
        for(i = 0; i < N; i++) {
            for(j = 0; j < M; j++) {
                scanf("%s", cmd);
                v2[i].push_back(parseDouble(cmd));
                v1[i].push_back(parseFrac(cmd));
            }
        }
        floatSol(v2, M, N);
        puts("");
        FracSol(v1, M, N);
        puts("");
    }
    return 0;
}
/*
4    3
1    0    0    0
0    0    1    1
0    1    1    1

3    3
1    0    1
2    1    4
3    1    6

*/

台: Morris
人(2,250) | 回(0)| 推 (0)| 收藏 (0)|
全站分: 不分 | 人分: 其他目 |
此分下一篇:[料][作] dijkstra、矩乘法、eigenvalue
此分上一篇:[料][作] 霍夫曼

是 (若未登入"人新台"看不到回覆唷!)
* 入:
入片中算式的果(可能0) 
(有*必填)
TOP
全文
ubao snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86