
看了一下这书,质量不错,推荐大家有时间看看: https://udlbook.github.io/udlbook/
Table of contents Chapter 1 - Introduction Chapter 2 - Supervised learning Chapter 3 - Shallow neural networks Chapter 4 - Deep neural networks Chapter 5 - Loss functions Chapter 6 - Training models Chapter 7 - Gradients and initialization Chapter 8 - Measuring performance Chapter 9 - Regularization Chapter 10 - Convolutional networks Chapter 11 - Residual networks Chapter 12 - Transformers Chapter 13 - Graph neural networks Chapter 14 - Unsupervised learning Chapter 15 - Generative adversarial networks Chapter 16 - Normalizing flows Chapter 17 - Variational autoencoders Chapter 18 - Diffusion models Chapter 19 - Deep reinforcement learning Chapter 20 - Why does deep learning work? Chapter 21 - Deep learning and ethics 1 wang9571 2023-11-27 11:38:15 +08:00 啧, 刚在 hacker news 看到 |
2 rmrf OP 这个 pdf 的排版实在太紧密了,看的眼睛疼,唉。 |