[从文本到 3D] 输入文本描述,生成 3D Mesh - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
爱意满满的作品展示区。
layumi
V2EX    分享创造

[从文本到 3D] 输入文本描述,生成 3D Mesh

  •  1
     
  •   lyumi
    layumi 2023-10-11 16:56:25 +08:00 2195 次点击
    这是一个创建于 743 天前的主题,其中的信息可能已经有所发展或是发生改变。

    小红书的 Demo: https://www.xiaohongshu.com/explore/651ae551000000001e00c7b0

    Youtube 的 Demo: https://www.youtube.com/watch?v=wxoOcO-9NWU

    代码在 https://github.com/Texaser/MTN

    欢迎大家关注! Star !感谢各位大佬!

    输入一个文本,大概训练 1 个小时,就可以产生对应的 3D model 了。

    相比之前的算法,由于我们采用 progressive 的形式,在形态上的鲁棒性更强,收敛速度也快一些。

    MTN (Multi-Scale Triplane Network)

    This repository contains the official implementation of Progressive Text-to-3D Generation for Automatic 3D Prototyping ( https://arxiv.org/abs/2309.14600).

    Paper

    Video results

    https://github.com/Texaser/MTN/assets/50570271/bdc776a6-ee2d-43ff-9ee3-21784799d3cb

    https://github.com/Texaser/MTN/assets/50570271/197fa808-154b-4671-8446-8350b1e166d6

    For more videos, please refer to https://www.youtube.com/watch?v=LH6-wKg30FQ

    Instructions:

    1. Install the requirements:
    pip install -r requirements.txt 

    To use DeepFloyd-IF, you need to accept the usage conditions from hugging face, and login with huggingface-cli login in command line.

    1. Start training!
    # choose stable-diffusion version python main.py --text "a hamburger" --workspace trial -O --sd_version 2.1 # use DeepFloyd-IF for guidance: python main.py --text "a hamburger" --workspace trial -O --IF python main.py --text "a hamburger" --workspace trial -O --IF --vram_O # requires ~24G GPU memory python main.py -O --text "a tiger cub" --workspace trial_perpneg_if_tiger --iters 6000 --IF --batch_size 1 --perpneg python main.py -O --text "a shiba dog wearing sunglasses" --workspace trial_perpneg_if_shiba --iters 6000 --IF --batch_size 1 --perpneg python main.py -O --text "a octopus toy" --workspace trial_perpneg_if_octopus --iters 6000 --IF --batch_size 1 --perpneg # larger absolute value of negative_w is used for the following command because the defult negative weight of -2 is not enough to make the diffusion model to produce the views as desired python main.py -O --text "a shiba dog wearing sunglasses" --workspace trial_perpneg_if_shiba --iters 6000 --IF --batch_size 1 --perpneg --negative_w -3.0 # after the training is finished: # test (exporting 360 degree video) python main.py --workspace trial -O --test # also save a mesh (with obj, mtl, and png texture) python main.py --workspace trial -O --test --save_mesh # test with a GUI (free view control!) python main.py --workspace trial -O --test --gui 

    Tested environments

    • torch 1.13 & CUDA 11.5 on a V100.

    Citation

    If you find this work useful, a citation will be appreciated via:

    @article{yi2023progressive, title={Progressive Text-to-3D Generation for Automatic 3D Prototyping}, author={Yi, Han and Zheng, Zhedong and Xu, Xiangyu and Chua, Tat-seng}, journal={arXiv preprint arXiv:2309.14600}, year={2023} } 

    Acknowledgement

    This code base is built upon the following awesome open-source projects: Stable DreamFusion, threestudio

    Thanks the authors for their remarkable job !

    1 条回复    2023-10-12 00:31:03 +08:00
    lj394139
        1
    lj394139  
       2023-10-12 00:31:03 +08:00
    又是一篇顶会
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     4486 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 27ms UTC 01:05 PVG 09:05 LAX 18:05 JFK 21:05
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86