numpy 转 torch , GPU 并行计算 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
xddd9485
V2EX    机器学习

numpy 转 torch , GPU 并行计算

  •  
  •   xddd9485 2023-10-02 11:37:31 +08:00 1669 次点击
    这是一个创建于 805 天前的主题,其中的信息可能已经有所发展或是发生改变。

    代码小白, 写代码的时候直接使用 numpy , 没考虑到之后要用 GPU

    目前是打算用 Colab 跑这些代码

    求各位大神帮帮忙, 怎么改动才能把这些需要多次调用的函数使用 GPU 计算 (在后面的代码中也会用到 PSO 之类的东西)



    import numpy as np import pandas as pd import warnings warnings.filterwarnings('ignore') # @title 阴影确定 # ### 1]. 判断点是否在阴影内 # Displaying all the modified functions def is_left(P0, P1, P2): """Determine if point P2 is to the left of the line segment from P0 to P1.""" return (P1[0] - P0[0]) * (P2[1] - P0[1]) - (P2[0] - P0[0]) * (P1[1] - P0[1]) # 绕射法判断点是否在多边形内部 def winding_number_revised(P, polygon_corners): """Revised winding number function.""" wn = 0 num_vertices = len(polygon_corners) # Iterate through the edges of the polygon for i in range(num_vertices - 1): if polygon_corners[i][1] <= P[1] < polygon_corners[i+1][1]: # Upward crossing if is_left(polygon_corners[i], polygon_corners[i+1], P) > 0: wn += 1 elif polygon_corners[i+1][1] <= P[1] < polygon_corners[i][1]: # Downward crossing if is_left(polygon_corners[i], polygon_corners[i+1], P) < 0: wn -= 1 # Convert wn to binary (inside/outside) value return 1 if wn != 0 else 0 # ### 2]. 角点计算 # 角点排序 def sort_corners(unsorted_corners, center): """Sort corners in counter-clockwise order.""" vectors = [np.array(corner) - np.array(center) for corner in unsorted_corners] angles = [np.arctan2(vector[1], vector[0]) for vector in vectors] sorted_corners = [corner for _, corner in sorted(zip(angles, unsorted_corners))] return sorted_corners # 确保凸四边形的情况下计算角点 def debug_compute_corners_corrected(center, normal, K, L): """Compute corners ensuring they form a convex parallelogram.""" v = np.array([0, 0, 1]) # Assuming z-axis as a reference vector if np.allclose(normal, v) or np.allclose(normal, -v): # If normal is aligned with z-axis, take another reference v = np.array([1, 0, 0]) dir1 = np.cross(normal, v) dir1 = dir1 / np.linalg.norm(dir1) dir2 = np.cross(normal, dir1) dir2 = dir2 / np.linalg.norm(dir2) half_K = K / 2 half_L = L / 2 corner1 = center + half_K * dir1 + half_L * dir2 corner2 = center + half_K * dir1 - half_L * dir2 corner3 = center - half_K * dir1 - half_L * dir2 # Swapped the ordering to ensure convex shape corner4 = center - half_K * dir1 + half_L * dir2 # Swapped the ordering to ensure convex shape return corner1, corner2, corner3, corner4 # 存储角点 def compute_matrix_corners_sorted_v4(data, K, L): """Computes the matrix corners with the corrected function and includes z-coordinates.""" corners = data.apply(lambda row: debug_compute_corners_corrected([row["x(m)"], row["y(m)"], row["z(m)"]], [row["x_normal"], row["y_normal"], row["z_normal"]], K, L), axis=1) # Sort the corners corners = corners.apply(lambda x: sort_corners(x, [0, 0, 0])) data['Corner1_x'] = corners.apply(lambda x: x[0][0]) data['Corner1_y'] = corners.apply(lambda x: x[0][1]) data['Corner1_z'] = corners.apply(lambda x: x[0][2]) data['Corner2_x'] = corners.apply(lambda x: x[1][0]) data['Corner2_y'] = corners.apply(lambda x: x[1][1]) data['Corner2_z'] = corners.apply(lambda x: x[1][2]) data['Corner3_x'] = corners.apply(lambda x: x[2][0]) data['Corner3_y'] = corners.apply(lambda x: x[2][1]) data['Corner3_z'] = corners.apply(lambda x: x[2][2]) data['Corner4_x'] = corners.apply(lambda x: x[3][0]) data['Corner4_y'] = corners.apply(lambda x: x[3][1]) data['Corner4_z'] = corners.apply(lambda x: x[3][2]) return data # ### 3]. 反射光线计算 # 每枚镜子反射光线计算 def compute_reflected_light_direction(V, B, data_with_plane_equation): """Compute the direction of the reflected light.""" # 通过镜子座标检索 data_with_plane_equation 中对应的镜子法向量 matching_row = data_with_plane_equation[(data_with_plane_equation["x(m)"] == B[0]) & (data_with_plane_equation["y(m)"] == B[1]) & (data_with_plane_equation["z(m)"] == B[2])] if matching_row.empty: return None # 提取镜子的法向量 normal = np.array([matching_row["x_normal"].values[0], matching_row["y_normal"].values[0], matching_row["z_normal"].values[0]]) # 计算反射光线的方向向量 V_reflected = V - 2 * np.dot(V, normal) * normal return V_reflected # ### 4]. 交点转化判断 # 计算平面方程 def compute_plane_equation(data): """Compute the equation of the plane for each mirror.""" A_values, B_values, C_values, D_values = [], [], [], [] for index, row in data.iterrows(): P1 = np.array([row["Corner1_x"], row["Corner1_y"], row["Corner1_z"]]) P2 = np.array([row["Corner2_x"], row["Corner2_y"], row["Corner2_z"]]) P3 = np.array([row["Corner3_x"], row["Corner3_y"], row["Corner3_z"]]) v1 = P2 - P1 v2 = P3 - P1 n = np.cross(v1, v2) D = -np.dot(n, P1) A_values.append(n[0]) B_values.append(n[1]) C_values.append(n[2]) D_values.append(D) updated_data = data.copy() updated_data['A'] = A_values updated_data['B'] = B_values updated_data['C'] = C_values updated_data['D'] = D_values return updated_data # 计算线面交点 def compute_intersection(P0, d, plane_equation): """Compute the intersection point of line and plane.""" A, B, C, D = plane_equation n = np.array([A, B, C]) P0 = np.array(P0) t = -(np.dot(n, P0) + D) / np.dot(n, d) intersection = P0 + t * d return intersection # 计算反射光线 def reflective_light_function_v2(x, y, z, d, plane_equation_df): """Determine if light is reflected from a given point to the viewer.""" for _, row in plane_equation_df.iterrows(): A, B, C, D = row['A'], row['B'], row['C'], row['D'] corners = [ (row["Corner1_x"], row["Corner1_y"]), (row["Corner2_x"], row["Corner2_y"]), (row["Corner3_x"], row["Corner3_y"]), (row["Corner4_x"], row["Corner4_y"]), (row["Corner1_x"], row["Corner1_y"]) ] P0 = [x, y, z] intersection_point = compute_intersection(P0, d, (A, B, C, D)) if winding_number_revised(intersection_point[:2], corners): return 1 return 0 # ### 5]. 功能函数 # Displaying the remaining modified functions def find_points_in_hemisphere(B, df, R): """Find mirrors that are within a hemisphere facing point B.""" x_B, y_B, z_B = B.flatten() # Flattening to ensure it's a 1D array vec_OB = np.array([x_B, y_B, z_B]) rows_list = [] for index, row in df.iterrows(): x, y, z = row['x(m)'], row['y(m)'], row['z(m)'] vec_P = np.array([x - x_B, y - y_B, z - z_B]) distance_to_B = np.linalg.norm(vec_P) dot_product = np.dot(vec_OB, vec_P) if distance_to_B <= R and dot_product < 0: new_row = { 'x(m)': row['x(m)'], 'y(m)': row['y(m)'], 'z(m)': row['z(m)'], 'x_normal': row['x_normal'], 'y_normal': row['y_normal'], 'z_normal': row['z_normal'] } rows_list.append(new_row) df_inside_hemisphere = pd.DataFrame(rows_list) return df_inside_hemisphere # 分块扫描并记录 def block_scanning(data_all, data, plane_equation_data, V, num_blocks, K, L): """Block scanning function with corrected corner computations.""" blocks = np.zeros((num_blocks, num_blocks)) matching_row = data_all[(data_all["x(m)"] == data[0]) & (data_all["y(m)"] == data[1]) & (data_all["z(m)"] == data[2])] if matching_row.empty: return None normal = np.array([matching_row["x_normal"].values[0], matching_row["y_normal"].values[0], matching_row["z_normal"].values[0]]) center = np.array([matching_row["x(m)"].values[0], matching_row["y(m)"].values[0], matching_row["z(m)"].values[0]]) # Compute corners using the corrected function corner1, corner2, corner3, corner4 = debug_compute_corners_corrected(center, normal, K, L) corners = [corner1, corner2, corner3, corner4] dir1 = np.array(corner2) - np.array(corner1) dir2 = np.array(corner4) - np.array(corner1) step1 = dir1 / num_blocks step2 = dir2 / num_blocks d = compute_reflected_light_direction(V, data, data_all) for i in range(num_blocks): for j in range(num_blocks): block_center = np.array(corner1) + (i + 0.5) * step1 + (j + 0.5) * step2 x, y, z = block_center A, B, C, D = matching_row["A"].values[0], matching_row["B"].values[0], matching_row["C"].values[0], matching_row["D"].values[0] z = (-D - A*x - B*y) / C # The reflective light function is omitted for now, but can be added back. result = reflective_light_function_v2(x, y, z, d, plane_equation_data) blocks[i, j] = result ratio = np.sum(blocks) / np.size(blocks) return ratio 
    3 条回复    2023-10-02 14:05:35 +08:00
    Muniesa
        1
    Muniesa  
       2023-10-02 13:26:08 +08:00 via Android
    先试试 cupy 吧,改成 torch 需要把 ndarry 换成 tensor ,数学运算要换成 torch 版本的,有的操作 torch 不支持可能还要转回 numpy 来算
    PinkPumpkin
        2
    PinkPumpkin  
       2023-10-02 13:40:39 +08:00 via Android
    让 GPT 帮你转换
    hsfzxjy
        3
    hsfzxjy  
       2023-10-02 14:05:35 +08:00 via Android
    用 jax ?
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     3220 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 38ms UTC 11:20 PVG 19:20 LAX 03:20 JFK 06:20
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86