企业有哪些场景可能会需要私有化 AI 大模型? - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
这是一个专门讨论 idea 的地方。

每个人的时间,资源是有限的,有的时候你或许能够想到很多 idea,但是由于现实的限制,却并不是所有的 idea 都能够成为现实。

那这个时候,不妨可以把那些 idea 分享出来,启发别人。
Trinity888
V2EX    奇思妙想

企业有哪些场景可能会需要私有化 AI 大模型?

  •  
  •   Trinity888 2023-09-13 08:18:5 +08:00 3764 次点击
    这是一个创建于 765 天前的主题,其中的信息可能已经有所发展或是发生改变。

    大家一起探讨一下,互相交流,探讨 AI 在私有化领域的机遇

    29 条回复    2023-09-19 13:49:00 +08:00
    murmur
        1
    murmur  
       2023-09-13 08:21:07 +08:00
    有啥好探讨的,百度已经支持文心私有化部署了,人家有专门的团队在执行这个东西帮你部署帮你策划场景帮你训练
    murmur
        2
    murmur  
       2023-09-13 08:24:41 +08:00
    据我所知现在做办公的、做音乐的都在部署自己的 AI 模型,甚至很多已经大范围推了,现在还在探讨估计喝粥都困难了
    Worldispow
        3
    Worldispow  
       2023-09-13 08:30:35 +08:00 via Android   2
    ai 包含很多,比如图像识别、模型预测等等,不仅仅是 chat
    lneoi
        4
    lneoi  
       2023-09-13 09:25:04 +08:00
    还有图像生成,出图的靠 AI 也快很多
    BingoXuan
        5
    BingoXuan  
       2023-09-13 09:34:28 +08:00
    保密环境下的各种需求
    ivstranger
        6
    ivstranger  
       2023-09-13 10:48:21 +08:00
    首先你自己得有大模型,人家企业才会找你私有化,但是这个门槛也太高了,普通企业/个人别想了。
    luobingit
        7
    luobingit  
       2023-09-13 11:06:15 +08:00
    部知识库?我司之前有这个想法,传统行业公司内部知识比较分散,纯靠脑子记。但是成本也是一方面
    zjuster
        8
    zjuster  
       2023-09-13 11:10:38 +08:00
    电商公司跑商品图、跑营销图
    直播公司虚拟主播

    这两个是电商行业运营成本的大头之一,是有盈利空间的。

    电商客服,大模型的提升相对目前的“智能客服”提升不大,成本反而很高,我认为是一个陷阱。类似的业务,尽管大模型可以做,但之前的数据模型早就可以做到商用水平+较低成本了,ROI 太低了。
    ychost
        9
    ychost  
       2023-09-13 11:19:29 +08:00
    客服
    Trinity888
        10
    Trinity888  
    OP
       2023-09-13 11:21:05 +08:00
    @BingoXuan 整体是偏向这方面,另一块是针对企业内部(非保密型企业)
    Trinity888
        11
    Trinity888  
    OP
       2023-09-13 11:22:32 +08:00
    @luobingit 对,这点确实是。目前各企业内部知识库基本靠 CRUD 加检索,如果有 AI 加持,会不会更有效率。成本主要在训练企业内部数据这块。
    Trinity888
        12
    Trinity888  
    OP
       2023-09-13 11:26:01 +08:00
    @zjuster 您说的确实是这两块,可能大企业 AI 都在攻。我们只能做些更专注某行业业务方面的模型,这样还有点机会。目前看知识库智能推荐、划词推荐、根据知识库生成一些自己需要的内容,这块您觉得可行不
    aleimu
        13
    aleimu  
       2023-09-13 11:26:14 +08:00
    目前在做公司内部的知识库问答,这样的开源项目很多,部署起来也容易,难的是内部数据的收集和整理,想高出高质量的问答对需要花很多时间
    Trinity888
        14
    Trinity888  
    OP
       2023-09-13 11:26:58 +08:00
    @zjuster 目前图书市场怎么样?
    Trinity888
        15
    Trinity888  
    OP
       2023-09-13 11:29:59 +08:00
    @aleimu “高出高质量的问答”,这个貌似没有个可验证的标准,这对模型训练要求更高一些。可以探讨一下,如何才能更高质量
    zjuster
        16
    zjuster  
       2023-09-13 11:41:26 +08:00
    @Trinity888

    我在 07 年和 16 年分别在两家公司做过类似的文本模型建设,都是当时的头部企业。这两段经历,尽管服务器算力有很大的增长吗,模型标准性和逻辑关系、复杂文本处理能力都有增长(甚至说突破吧),但本质上的结果(用户检索结果的相关性和准确性的相关指标)没有突破性,只在在上下文的能力是有一些提升。

    就算到如今 22 年的层出不穷的大数据模型,在文本和结构化方面的用户端输出侧,依然不存在 相比三元组解法 的突破性进展。这些结果的好坏,不在于模型能力,更多的是在于你投入数据评估与校对的人力。(人-功-智能)。

    所以我看好图形影音方面(多媒体或者说多模、多元)的进展,对文本相关内容持有悲观态度。
    736531683
        17
    736531683  
       2023-09-13 12:56:53 +08:00
    任何场景,一个公司有相当多的内部数据,不私有化怎么利用起来。
    2NUT
        18
    2NUT  
       2023-09-13 14:36:01 +08:00
    @murmur 越早不是越好,早的可能是先烈
    murmur
        19
    murmur  
       2023-09-13 14:47:44 +08:00
    @736531683 AI 不懂装懂这个问题不解决怎么大规模商业内部铺开,我还得先判断 AI 是不是说胡话
    akring
        20
    akring  
       2023-09-13 15:11:01 +08:00
    能想到最简单的就是问答库,例如内部规章解答。
    Myprajna
        21
    Myprajna  
       2023-09-13 16:39:26 +08:00
    有很多,但是不能告诉你。
    Lion814
        22
    Lion814  
       2023-09-13 16:50:01 +08:00
    @aleimu 每个公司知识库都不一样,定制化长尾场景会不会成本太高?如果提供可以自训练的平台是不是更容易商业化
    threeEggs123
        23
    threeEggs123  
       2023-09-13 17:13:43 +08:00 via Android
    语音识别,就是 ASR STT,或者 TTS ,专门给金融机构的呼叫做这种服务。然后语音这种可能有隐私信息,就要企业化私有部署,都没上云。
    hxzhouh1
        24
    hxzhouh1  
       2023-09-14 15:23:56 +08:00
    专家系统?
    aleimu
        25
    aleimu  
       2023-09-14 17:24:45 +08:00
    @Lion814 不用训练模型,只是做文本向量化匹配,然后由大模型总结和整理给出回复,这是目前比较流行的方案
    yinmin
        26
    yinmin  
       2023-09-17 23:44:29 +08:00   1
    用户评价的 AI 分析。用户评价是一段文字,让 AI 去做识别归类后入数据库。给一段 GPT Prompt 的实战示例:

    ===========
    system:
    以下是电子商务网站的用户评价信息,请分别用 10 字~50 字给出用户评价产品的优点、缺点、总结评价、需要商品售后服务解决的问题,如果是客户使用抱怨产品不佳无需售后服务解决的,请填“无”,如果客户评价中提到的问题已经解决了,请填“已解决”,并评估用户评价是正面还是负面的,完全正面 5 分,完全负面-5 分,给出评估值。数据以 json 返回,JSON 格式为{"总结":"...","情绪": 5} ,以下是用户的评价:

    user:
    紧急要用,发过来一台,别人退的。开机键一层老灰,屏幕也是一层灰,上一任拿卡针粗鲁了点,撕烂了。告诉我是正常的???

    assistant:
    ```json
    {
    "产品优点": "无",
    "产品缺点": "存在灰尘和损坏痕迹",
    "总结": "商品质量差,存在灰尘和损坏痕迹。",
    "需要售后服务解决的问题": "无",
    "情绪": -3
    }
    ```
    ===========
    yinmin
        27
    yinmin  
       2023-09-17 23:48:31 +08:00
    客户工单的紧急度识别。通过 AI 阅读工单正文的文字,结合客户等级和以往的工单记录情况,给工单的紧急度打分。如果 AI 判断是紧急工单,就提升工单优先级。
    yinmin
        28
    yinmin  
       2023-09-17 23:59:48 +08:00
    接 #26 ,将用户评价信息转换成 json 包存入数据库后,产品优点/缺点的信息列表后再次喂给 AI ,让 AI 总结。处理 1 个产品的几万条评价,几十分钟就能汇总出用户对产品的真实评价,能进而指导产品/销售的改良。
    Trinity888
        29
    Trinity888  
    OP
       2023-09-19 13:49:00 +08:00
    感谢大家的创意想法
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     3348 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 26ms UTC 10:30 PVG 18:30 LAX 03:30 JFK 06:30
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86