audioFlux - 一个系统的音频特征提取库,可用于深度学习 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
爱意满满的作品展示区。
829939
V2EX    分享创造

audioFlux - 一个系统的音频特征提取库,可用于深度学习

  •  4
     
  •   829939
    LiweiDong 2023 年 3 月 20 日 2645 次点击
    这是一个创建于 1028 天前的主题,其中的信息可能已经有所发展或是发生改变。

    audioFlux

    audioFlux 是一个 Python 和 C 实现的库,提供音频领域系统、全面、多维度的特征提取与组合,结合各种深度学习网络模型,进行音频领域的业务研发。音频特征较为全面,支持移动端,提供尽可能细粒度、体系化的特征维。

    Overview

    audioFlux 基于数据流设计。它在结构上解耦了每个算法模块,可以快速有效地提取多个维度的特征。以下是主要功能体系结构图。

    feature_all

    可以使用多维特征组合,选择不同的深度学习网络训练,研究音频领域的各种任务,如 Classification 、Separation 、MIR 等。

    Flow

    QuickStart

    pip install audioflux

    import numpy as np import audioflux as af import matplotlib.pyplot as plt from audioflux.display import fill_spec # Get a 220Hz's audio file path sample_path = af.utils.sample_path('220') # Read audio data and sample rate audio_arr, sr = af.read(sample_path) # Extract mel spectrogram spec_arr, mel_fre_band_arr = af.mel_spectrogram(audio_arr, num=128, radix2_exp=12, samplate=sr) spec_arr = np.abs(spec_arr) # Extract mfcc mfcc_arr, _ = af.mfcc(audio_arr, cc_num=13, mel_num=128, radix2_exp=12, samplate=sr) # Display audio_len = audio_arr.shape[0] # calculate x/y-coords x_coords = np.linspace(0, audio_len / sr, spec_arr.shape[1] + 1) y_coords = np.insert(mel_fre_band_arr, 0, 0) fig, ax = plt.subplots() img = fill_spec(spec_arr, axes=ax, x_coords=x_coords, y_coords=y_coords, x_axis='time', y_axis='log', title='Mel Spectrogram') fig.colorbar(img, ax=ax) fig, ax = plt.subplots() img = fill_spec(mfcc_arr, axes=ax, x_coords=x_coords, x_axis='time', title='MFCC') fig.colorbar(img, ax=ax) plt.show() 

    Spec

    感兴趣的请给个 Star

    Github: https://github.com/libAudioFlux/audioFlux 欢迎探讨关于音频相关的问题

    更多实例

    https://github.com/libAudioFlux/audioFlux#other-examples

    10 条回复    2023-03-20 15:15:25 +08:00
    CMLab
        1
    CMLab  
       2023 年 3 月 20 日
    有 pitch 相关的 demo 吗
    829939
        2
    829939  
    OP
       2023 年 3 月 20 日
    @CMLab 你好,有音高估算的 demo 。


    ```
    import numpy as np
    import audioflux as af
    from audioflux.type import PitchType

    import matplotlib.pyplot as plt
    from audioflux.display import fill_wave

    # Read audio data and sample rate
    audio_arr, sr = af.read(af.utils.sample_path('voice'))

    obj = af.Pitch(pitch_type=PitchType.YIN)

    fre_arr, value_arr1, value_arr2 = obj.pitch(audio_arr)
    fre_arr[fre_arr < 1] = np.nan

    # Display
    fig, ax = plt.subplots(nrows=2, figsize=(8, 6), sharex=True)
    times = np.arange(0, len(fre_arr)) * (obj.slide_length / obj.samplate)

    fill_wave(audio_arr, samplate=sr, axes=ax[0])

    ax[1].xaxis.set_label_text("Time(s)")
    ax[1].yaxis.set_label_text("Frequency(Hz)")
    ax[1].plot(times, fre_arr, label='fre', linewidth=3)
    # set real plot
    real_fre_arr = np.zeros_like(fre_arr)
    real_fre_arr[25:48] = 261.6
    real_fre_arr[56:78] = 293.7
    real_fre_arr[87:107] = 329.6
    real_fre_arr[118:135] = 349.2
    real_fre_arr[150:169] = 392.0
    real_fre_arr[179:200] = 440.0
    real_fre_arr[212:243] = 493.9
    real_fre_arr[real_fre_arr == 0] = np.nan
    ax[1].plot(times, real_fre_arr, color='red', label='fre', linewidth=2)

    plt.show()
    ```

    ![pitch]( https://raw.githubusercontent.com/libAudioFlux/audioFlux/master/image/demos/demo_pitch.png)
    xieren58
        3
    xieren58  
       2023 年 3 月 20 日   1
    已经 star 过了...
    cnsouka
        4
    cnsouka  
       2023 年 3 月 20 日
    感觉很厉害,已 star
    PinkPumpkin
        5
    PinkPumpkin  
       2023 年 3 月 20 日 via Android
    这个相比 librosa 有什么特别的优势吗
    CMLab
        6
    CMLab  
       2023 年 3 月 20 日
    @829939 运行报错, 不支持 m1 ``` libaudioflux.dylib (mach-o file, but is an incompatible architecture (have (x86_64), need (arm64e))```
    829939
        7
    829939  
    OP
       2023 年 3 月 20 日
    @xieren58 感谢老铁
    829939
        8
    829939  
    OP
       2023 年 3 月 20 日
    @CMLab 是用 pip 安装的吗? 之前编译时漏了 macOS arm 的支持,这两天会发布更新版本。
    或者先使用源码自行编译可以支持 M1 芯片。
    829939
        9
    829939  
    OP
       2023 年 3 月 20 日
    @lbingl

    librosa ,目前业界内常用的库,其过程命令式的接口实现设计,方便易用、易理解的同时,也加剧了其性能短板,大规模数据跑起来特别慢。

    audioFlux ,音频特征较为全面,支持移动端,提供尽可能细粒度、体系化的特征维度和组合。算法使用 C 实现,性能要比 librosa 快很多。适合大规模特征提取。
    PinkPumpkin
        10
    PinkPumpkin  
       2023 年 3 月 20 日 via Android
    @829939 谢谢,最近正好在做一个语音和深度学习相关的工作,我看看是不是能用上
    /div>
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     2658 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 43ms UTC 03:22 PVG 11:22 LAX 19:22 JFK 22:22
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86