用 vosk 语音识别能否成功分离一段英文单词的音频 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
推荐学习书目
Learn Python the Hard Way
Python Sites
PyPI - Python Package Index
http://diveintopython.org/toc/index.html
Pocoo
值得关注的项目
PyPy
Celery
Jinja2
Read the Docs
gevent
pyenv
virtualenv
Stackless Python
Beautiful Soup
结巴中文分词
Green Unicorn
Sentry
Shovel
Pyflakes
pytest
Python 编程
pep8 Checker
Styles
PEP 8
Google Python Style Guide
Code Style from The Hitchhiker's Guide
closernow
V2EX    Python

用 vosk 语音识别能否成功分离一段英文单词的音频

  •  
  •   closernow 2021-11-20 00:08:57 +08:00 2358 次点击
    这是一个创建于 1503 天前的主题,其中的信息可能已经有所发展或是发生改变。
    在 stack overflow 上看到一个这样的求助帖子,贴主想用 webrtcvad and pydub 分离一段音频,好像是从一个人说的话里面,单独把单词提取出来。下面的有个大佬给了他一个解决方案就是用 vosk 来识别和分离,,,
    可是我基本不懂 python ,但是 又非常想实现这个功能,因为最近学英语,一段音频里面有几百个单词,我想把他们按单词分段提取出来,然后导入到 anki 进行学习。
    目前在用的是 ffmpeg 配合一个网上下载的 python 文件来实现,但是效果只能达到 80%左右,因为有些单词确实很难区分静音部分,比如 sector 这个单词,前面的 s 发音会被剪掉,然后今天发现了 vosk 这个识别库,不知道能不能做到 95%的完美。
    原帖地址在下面,那位答主说的很详细了,可是我就是看不懂,希望能有大佬指点一二,
    顺便也把我之前辛苦找到的一段也附上,现在我都不知道哪里找到的了,只是觉得这段文字解决了我很大的问题,就是还谈不上完美。。。。
    https://stackoverflow.com/questions/64153590/audio-signal-split-at-word-level-boundary









    目前我在用的代码:
    # -*- coding: utf-8 -*-
    from pydub import AudioSegment
    from pydub.silence import detect_silence
    import os
    import uuid


    # 生成 guid
    def GUID():
    return str(uuid.uuid1()).replace("-", "")


    # 分割文件
    def SplitSound(filename, save_path, save_file_name, start_time, end_time, audio_type='mp3'):
    if not os.path.exists(save_path):
    try:
    os.mkdir(save_path)
    except Exception as e:
    print(e)

    sound = AudioSegment.from_file(filename, format=audio_type)
    result = sound[start_time:end_time]
    final_name = savePath
    if not savePath.endswith("/"):
    final_name = final_name + "/"
    final_name = final_name + save_file_name

    result.export(final_name, format=audio_type)
    # AudioSegment.export(result, format=audioType)


    def SplitSilence(file_name, save_path, audio_type='mp3'):
    sound = AudioSegment.from_file(file_name, format=audio_type)
    # print(len(sound))
    # print(sound.max_possible_amplitude)
    # start_end = detect_silence(sound,800,-57,1)
    start_end = detect_silence(sound, 800, -57, 1)

    # print(start_end)
    start_point = 0
    index = 1

    for item in start_end:
    if item[0] != 0:
    # 取空白部分的中位数
    end_point = (item[0] + item[1]) / 2
    print("%d-%d" % (start_point, end_point))
    SplitSound(file_name, save_path, str(index) + ".mp3", start_point, end_point)
    index = index + 1
    start_point = item[1]

    # 处理最后一段音频
    # sound.len
    SplitSound(file_name, save_path, str(index) + ".mp3", start_point, len(sound))
    # len(sound)


    audioPath = "/Users/maptoca/Desktop/mp3 分割 /5.3.11.mp3"
    savePath = "/Users/maptoca/Desktop/mp3 分割 /save5.3.11"
    SplitSilence(audioPath, savePath)



    下面是那位答主的代码,我不知道如何实现我想要的分离单个音频文件出来


    import sys
    import os
    import subprocess
    import json
    import math

    # tested with VOSK 0.3.15
    import vosk
    import librosa
    import numpy
    import pandas



    def extract_words(res):
    jres = json.loads(res)
    if not 'result' in jres:
    return []
    words = jres['result']
    return words

    def transcribe_words(recognizer, bytes):
    results = []

    chunk_size = 4000
    for chunk_no in range(math.ceil(len(bytes)/chunk_size)):
    start = chunk_no*chunk_size
    end = min(len(bytes), (chunk_no+1)*chunk_size)
    data = bytes[start:end]

    if recognizer.AcceptWaveform(data):
    words = extract_words(recognizer.Result())
    results += words
    results += extract_words(recognizer.FinalResult())

    return results

    def main():

    vosk.SetLogLevel(-1)

    audio_path = sys.argv[1]
    out_path = sys.argv[2]

    model_path = 'vosk-model-small-de-0.15'
    sample_rate = 16000

    audio, sr = librosa.load(audio_path, sr=16000)

    # convert to 16bit signed PCM, as expected by VOSK
    int16 = numpy.int16(audio * 32768).tobytes()

    # XXX: Model must be downloaded from https://alphacephei.com/vosk/models
    # https://alphacephei.com/vosk/models/vosk-model-small-de-0.15.zipbr /> if not os.path.exists(model_path):
    raise ValueError(f"Could not find VOSK model at {model_path}")

    model = vosk.Model(model_path)
    recognizer = vosk.KaldiRecognizer(model, sample_rate)

    res = transcribe_words(recognizer, int16)
    df = pandas.DataFrame.from_records(res)
    df = df.sort_values('start')

    df.to_csv(out_path, index=False)
    print('Word segments saved to', out_path)

    if __name__ == '__main__':
    main()
    closernow
        1
    closernow  
    OP
       2021-11-20 00:47:21 +08:00
    辛苦一词用词不当,就是完全是门外汉,找了好多天,安装插件都废了不少劲,吃亏就在完全不懂代码,请大佬们原谅。
    closernow
        2
    closernow  
    OP
       2021-11-20 00:49:07 +08:00
    希望能有大神教我完善这段代码,谢谢大家
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     2354 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 22ms UTC 11:37 PVG 19:37 LAX 03:37 JFK 06:37
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86