翻译:《实用的 Python 编程》02_04_Sequences - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
推荐学习书目
Learn Python the Hard Way
Python Sites
PyPI - Python Package Index
http://diveintopython.org/toc/index.html
Pocoo
值得关注的项目
PyPy
Celery
Jinja2
Read the Docs
gevent
pyenv
virtualenv
Stackless Python
Beautiful Soup
结巴中文分词
Green Unicorn
Sentry
Shovel
Pyflakes
pytest
Python 编程
pep8 Checker
Styles
PEP 8
Google Python Style Guide
Code Style from The Hitchhiker's Guide
codists
V2EX    Python

翻译:《实用的 Python 编程》02_04_Sequences

  •  
  •   codists
    codists 2021-02-23 19:27:34 +08:00 1821 次点击
    这是一个创建于 1695 天前的主题,其中的信息可能已经有所发展或是发生改变。

    2.4 序列

    序列数据类型

    Python 有三种序列数据类型。

    • 字符串:如 'Hello'。字符串是字符序列
    • 列表:如 [1, 4, 5]
    • 元组:如 ('GOOG', 100, 490.1)

    所有的序列都是有序的,由整数进行索引,并且具有长度。

    a = 'Hello' # String b = [1, 4, 5] # List c = ('GOOG', 100, 490.1) # Tuple # Indexed order a[0] # 'H' b[-1] # 5 c[1] # 100 # Length of sequence len(a) # 5 len(b) # 3 len(c) # 3 

    序列可以通过重复操作符 * 进行重复:s * n

    >>> a = 'Hello' >>> a * 3 'HelloHelloHello' >>> b = [1, 2, 3] >>> b * 2 [1, 2, 3, 1, 2, 3] >>> 

    相同类型的序列可以通过加号 + 进行拼接:s + t

    >>> a = (1, 2, 3) >>> b = (4, 5) >>> a + b (1, 2, 3, 4, 5) >>> >>> c = [1, 5] >>> a + c Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: can only concatenate tuple (not "list") to tuple 

    切片

    切片是指着从序列中提取子序列。切片的语法为 s[start:end]startend 是想要的子序列的索引。

    a = [0,1,2,3,4,5,6,7,8] a[2:5] # [2,3,4] a[-5:] # [4,5,6,7,8] a[:3] # [0,1,2] 
    • 索引 startend 必须是整数。
    • 切片不包括结尾值。这就像数学上的半开区间。
    • 如果省略索引,则它们默认为序列的开头或结尾。

    切片与重新赋值

    在列表上,切片可以被重新赋值和删除。

    # Reassignment a = [0,1,2,3,4,5,6,7,8] a[2:4] = [10,11,12] # [0,1,10,11,12,4,5,6,7,8] 

    注意:重新赋值的切片不需要具有相同的长度。

    # Deletion a = [0,1,2,3,4,5,6,7,8] del a[2:4] # [0,1,4,5,6,7,8] 

    序列的缩减

    有一常见的函数用于把序列缩减为单个值。

    >>> s = [1, 2, 3, 4] >>> sum(s) 10 >>> min(s) 1 >>> max(s) 4 >>> t = ['Hello', 'World'] >>> max(t) 'World' >>> 

    迭代序列

    可以使用 for 循环对序列中的元素进行迭代。

    >>> s = [1, 4, 9, 16] >>> for i in s: ... print(i) ... 1 4 9 16 >>> 

    在循环的每次迭代中,会获取一个新的项来处理。这个新的值会被放到迭代变量中。在此示例中,迭代变量为 x:

    for x in s: # `x` is an iteration variable ...statements 

    在每次迭代中,迭代变量的先前值会被覆盖(如果有)。循环结束后,迭代变量保留最后一个值。

    break 语句

    可以使用 break 语句提前跳出循环。

    for name in namelist: if name == 'Jake': break ... ... statements 

    break 语句执行时,它退出循环并且进入下一个语句。break 语句仅应用于最内部的循环。如果此循环在另一个循环的内部,那么 break 不会中断外部循环。

    continue 语句

    要跳过一个元素并且进入到下一个,请使用 continue 语句。

    for line in lines: if line == '\n': # Skip blank lines continue # More statements ... 

    如果当前项不重要或者是在处理时需要忽略,那么使用 continue 语句很有用。

    遍历整数

    如果需要计数,请使用 range() 函数。

    for i in range(100): # i = 0,1,...,99 

    range() 函数的语法是range([start,] end [,step])

    for i in range(100): # i = 0,1,...,99 for j in range(10,20): # j = 10,11,..., 19 for k in range(10,50,2): # k = 10,12,...,48 # Notice how it counts in steps of 2, not 1. 
    • 不包括结尾值。这与切片类似。
    • start 是可选的 , 默认值是 0
    • step 是可选的,默认值是 1
    • 当需要的值时候 range()才计算值,实际上,它不存储大范围的数。

    enumerate() 函数

    enumerate 函数为迭代添加一个额外的计数值。

    names = ['Elwood', 'Jake', 'Curtis'] for i, name in enumerate(names): # Loops with i = 0, name = 'Elwood' # i = 1, name = 'Jake' # i = 2, name = 'Curtis' 

    一般格式为enumerate(sequence [, start = 0])start

    with open(filename) as f: for lineno, line in enumerate(f, start=1): ... 

    enumerate可以看成以下语句的简写:

    i = 0 for x in s: statements i += 1 

    使用 enumerate 函数可以减少输入,运行速度也稍快一些。

    For 与元组

    可以迭代多个变量:

    points = [ (1, 4),(10, 40),(23, 14),(5, 6),(7, 8) ] for x, y in points: # Loops with x = 1, y = 4 # x = 10, y = 40 # x = 23, y = 14 # ... 

    当使用多个变量时,每个元组被拆包为一组迭代变量。变量的数目必须与每个元组中的项数匹配。

    zip() 函数

    zip 函数采用多个序列,并且生成将它们组合在一起的迭代器。

    columns = ['name', 'shares', 'price'] values = ['GOOG', 100, 490.1 ] pairs = zip(columns, values) # ('name','GOOG'), ('shares',100), ('price',490.1) 

    要获得结果,必须进行迭代。可以如先前所示的那样使用多个变量对元组进行拆包。

    for column, value in pairs: ... 

    zip 函数的常见用法是创建用于构造字典的键值对。

    d = dict(zip(columns, values)) 

    练习

    练习 2.13:计数

    尝试一些基本的计数示例:

    >>> for n in range(10): # Count 0 ... 9 print(n, end=' ') 0 1 2 3 4 5 6 7 8 9 >>> for n in range(10,0,-1): # Count 10 ... 1 print(n, end=' ') 10 9 8 7 6 5 4 3 2 1 >>> for n in range(0,10,2): # Count 0, 2, ... 8 print(n, end=' ') 0 2 4 6 8 >>> 

    练习 2.14:更多序列操作

    交互地试验一些序列缩减操作。

    >>> data = [4, 9, 1, 25, 16, 100, 49] >>> min(data) 1 >>> max(data) 100 >>> sum(data) 204 >>> 

    尝试遍历数据。

    >>> for x in data: print(x) 4 9 ... >>> for n, x in enumerate(data): print(n, x) 0 4 1 9 2 1 ... >>> 

    有时候,for 语句,len()range() 函数被初学者用于一些可怕的代码片段中,这些代码看起来像来自于古老的 C 程序。

    >>> for n in range(len(data)): print(data[n]) 4 9 1 ... >>> 

    不要那样做。阅读这些代码不仅辣眼睛,而且内存效率低,运行慢。如果想要迭代数据,使用普通的for 循环即可。如果碰巧因为某些原因需要使用索引,请使用 enumerate()函数。

    练习 2.15:enumerate() 函数使用示例

    回想一下,Data/missing.csv 文件包含一个股票投资组合的数据,但是有一些行缺少值。请使用 enumerate() 函数修改 pcost.py 程序,以便在遇到错误的输入时,打印带有警告信息的行号。

    >>> cost = portfolio_cost('Data/missing.csv') Row 4: Couldn't convert: ['MSFT', '', '51.23'] Row 7: Couldn't convert: ['IBM', '', '70.44'] >>> 

    为此,需要修改部分代码。

    ... for rowno, row in enumerate(rows, start=1): try: ... except ValueError: print(f'Row {rowno}: Bad row: {row}') 

    练习 2.16:使用 zip() 函数

    Data/portfolio.csv 文件中,第一行包含列标题。在之前所有代码中,我们把它丢弃了。

    >>> f = open('Data/portfolio.csv') >>> rows = csv.reader(f) >>> headers = next(rows) >>> headers ['name', 'shares', 'price'] >>> 

    但是,如果标题要用于其它有用的事情呢?这就涉及到 zip() 函数了。首先,尝试把文件标题和数据行配对。

    >>> row = next(rows) >>> row ['AA', '100', '32.20'] >>> list(zip(headers, row)) [ ('name', 'AA'), ('shares', '100'), ('price', '32.20') ] >>> 

    请注意 zip() 函数是如何把列标题与列值配对。在这里,我们使用 list() 函数把结果转换为列表,以便查看。通常,zip() 函数创建一个必须由 for 循环使用的迭代器。

    这种配对是构建字典的中间步骤。现在尝试:

    >>> record = dict(zip(headers, row)) >>> record {'price': '32.20', 'name': 'AA', 'shares': '100'} >>> 

    在处理大量数据文件时,这种转换是最有用的技巧之一。例如,假设需要使 pcost.py 程序处理各种输入文件,但是不考虑名称,份额,价格所在列的编号。

    修改 pcost.py 程序中的 portfolio_cost(),使其看起来像这样:

    # pcost.py def portfolio_cost(filename): ... for rowno, row in enumerate(rows, start=1): record = dict(zip(headers, row)) try: nshares = int(record['shares']) price = float(record['price']) total_cost += nshares * price # This catches errors in int() and float() conversions above except ValueError: print(f'Row {rowno}: Bad row: {row}') ... 

    现在,在一个完全不同的数据文件 Data/portfoliodate.csv(如下所示)上尝试 portfolio_cost() 函数。

    name,date,time,shares,price "AA","6/11/2007","9:50am",100,32.20 "IBM","5/13/2007","4:20pm",50,91.10 "CAT","9/23/2006","1:30pm",150,83.44 "MSFT","5/17/2007","10:30am",200,51.23 "GE","2/1/2006","10:45am",95,40.37 "MSFT","10/31/2006","12:05pm",50,65.10 "IBM","7/9/2006","3:15pm",100,70.44 
    >>> portfolio_cost('Data/portfoliodate.csv') 44671.15 >>> 

    如果操作正确,会发现程序仍然能够正常运行,即使数据文件的列格式与之前的完全不同,这很酷!

    此处所做的更改是微妙的,但是却意义重大。新版的 portfolio_cost()可以读取任何 CSV 文件,并从中选择需要的值,而不是硬编码去读取单个固定文件格式。只要文件有必要的列,代码就能正常运行。

    修改在 2.3 节编写的 report.py 程序,以便能够使用相同的技术挑选出列标题。

    尝试以 Data/portfoliodate.csv 文件作为输入,运行 report.py 程序,并观察是否生成和之前一样的答案。

    练习 2.17:翻转字典

    字典将键映射到值。例如,股票价格字典。

    >>> prices = { 'GOOG' : 490.1, 'AA' : 23.45, 'IBM' : 91.1, 'MSFT' : 34.23 } >>> 

    如果使用字典的 items() 方法,那么可以获取到键值对 (key,value)

    >>> prices.items() dict_items([('GOOG', 490.1), ('AA', 23.45), ('IBM', 91.1), ('MSFT', 34.23)]) >>> 

    但是,如果想要获取 (value, key) 键值对列表呢?

    提示:使用 zip()函数。

    >>> pricelist = list(zip(prices.values(),prices.keys())) >>> pricelist [(490.1, 'GOOG'), (23.45, 'AA'), (91.1, 'IBM'), (34.23, 'MSFT')] >>> 

    为什么这样操作?首先,这允许对字典数据执行确切类型的数据处理。

    >>> min(pricelist) (23.45, 'AA') >>> max(pricelist) (490.1, 'GOOG') >>> sorted(pricelist) [(23.45, 'AA'), (34.23, 'MSFT'), (91.1, 'IBM'), (490.1, 'GOOG')] >>> 

    其次,这也说明了元组的一个重要特征,当在比较中使用元组时,从第一项开始,逐元素进行比较,类似于字符串中字符与字符逐个比较。

    zip() 函数经常应用于需要从不同的地方把数据进行配对。例如,为了使用已命名的值构建字典,将列名和列值进行配对。

    请注意,zip() 函数不限于一对。例如,可以使用任意数量的列表作为输入。

    >>> a = [1, 2, 3, 4] >>> b = ['w', 'x', 'y', 'z'] >>> c = [0.2, 0.4, 0.6, 0.8] >>> list(zip(a, b, c)) [(1, 'w', 0.2), (2, 'x', 0.4), (3, 'y', 0.6), (4, 'z', 0.8))] >>> 

    另外,请注意,一旦最短的输入序列耗尽,zip() 函数将会停止。

    >>> a = [1, 2, 3, 4, 5, 6] >>> b = ['x', 'y', 'z'] >>> list(zip(a,b)) [(1, 'x'), (2, 'y'), (3, 'z')] >>> 

    注:完整翻译见 https://github.com/codists/practical-python-zh

    7 条回复    2021-02-24 19:25:02 +08:00
    Lemeng
        1
    Lemeng  
       2021-02-23 20:37:18 +08:00
    支持一下,绑定
    IgniteWhite
        2
    IgniteWhite  
       2021-02-23 20:40:15 +08:00 via iPhone
    大佬已经翻译了这么多了!佩服生产力
    codists
        3
    codists  
    OP
       2021-02-23 22:12:29 +08:00
    @Lemeng
    感谢大佬的支持。
    codists
        4
    codists  
    OP
       2021-02-23 22:13:03 +08:00
    @IgniteWhite
    每天晚上搞一点。
    ClydeX
        5
    ClydeX  
       2021-02-24 13:48:46 +08:00
    支持一下
    xmtpw
        6
    xmtpw  
       2021-02-24 14:14:11 +08:00
    支持一下
    codists
        7
    codists  
    OP
       2021-02-24 19:25:02 +08:00
    @ClydeX
    @xmtpw
    感谢两位大佬的支持,期待有机会与两位大佬多多交流。
    /div>
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     5264 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 27ms UTC 07:11 PVG 15:11 LAX 00:11 JFK 03:11
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86