pandas 操作求助,数据如下 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
推荐学习书目
Learn Python the Hard Way
Python Sites
PyPI - Python Package Index
http://diveintopython.org/toc/index.html
Pocoo
值得关注的项目
PyPy
Celery
Jinja2
Read the Docs
gevent
pyenv
virtualenv
Stackless Python
Beautiful Soup
结巴中文分词
Green Unicorn
Sentry
Shovel
Pyflakes
pytest
Python 编程
pep8 Checker
Styles
PEP 8
Google Python Style Guide
Code Style from The Hitchhiker's Guide
Scorpiocat
V2EX    Python

pandas 操作求助,数据如下

  •  
  •   Scorpiocat 2020-12-14 13:01:33 +08:00 2269 次点击
    这是一个创建于 1779 天前的主题,其中的信息可能已经有所发展或是发生改变。
    import numpy as np
    import pandas as pd

    df = pd.DataFrame({'月':['1','2','3','5','7'],
    '医院':['人民','二院','人民','二院','人民'],
    '销量':np.arange(1,10,2) })
    print(df)

    df1 = df.groupby(['医院','月']).sum()
    print(df1)

    list = np.arange(1,8,1)
    print (list)

    #需求:groupby 之后,同一医院的月份没有在 list 中出现(比如人民没有 2,4,5,6 月),则补充缺失月份,并且销量数据为 0,同理下面的医院也进行同样操作
    10 条回复    2020-12-14 16:22:56 +08:00
    Scorpiocat
        2
    Scorpiocat  
    OP
       2020-12-14 13:46:47 +08:00
    谢谢回答!我运行了一下代码没有问题。但是怎么能把医院中缺失的月份数据补齐去呢?
    @noqwerty
    xyd1205148795
        3
    xyd1205148795  
       2020-12-14 13:48:01 +08:00
    这个可以吗
    df1 = df.set_index(['月','医院]).unstack()
    mOnth=pd.DataFrame(np.arange(1,8,1).T,columns=['月'])
    month['月'] = month['月'].astype('str')
    data = month.merge(df1,how='left',on='月').fillna(0)
    print(data)
    jyyx
        4
    jyyx  
       2020-12-14 14:20:06 +08:00
    df = pd.DataFrame({'月':['1','2','3','5','7'],
    '医院':['人民','二院','人民','二院','人民'],
    '销量':np.arange(1,10,2) })
    month_list = ['1','2','3','4','5','6','7','8']
    df['月'] = df['月'].astype('category').cat.set_categories(month_list, ordered=True)
    gb = df.groupby(['医院','月']).sum().fillna(0)
    print(gb)
    princelai
        5
    princelai  
       2020-12-14 14:21:58 +08:00
    from itertools import product
    df2 = df1.reindex(index=list(product(df1.index.get_level_values(0).unique(),[f'{i}' for i in np.arange(1,8,1)])),fill_value=0)
    Scorpiocat
        6
    Scorpiocat  
    OP
       2020-12-14 14:46:08 +08:00
    我的想法是先 groupbysum,再对每一家医院的缺失月份数据补齐,这一步就不太明白。
    放出原始数据,看看大家有没有兴趣整理一下。

    原始数据
    链接: https://pan.baidu.com/s/1zVaTeBDGzL1q_DjYrHptIQ 提取码: 1d2j
    Scorpiocat
        7
    Scorpiocat  
    OP
       2020-12-14 15:51:57 +08:00
    princelai
        8
    princelai  
       2020-12-14 16:05:38 +08:00   1
    import pandas as pd

    df = pd.read_excel("data.xlsx")

    df1 = df.pivot_table(index="医院",columns="月",values="总计",aggfunc="sum").reindex(columns=range(1,13)).fillna(0).cumsum(axis=1)
    df1.columns = [f"{c}月" for c in df1.columns]
    princelai
        9
    princelai  
       2020-12-14 16:06:04 +08:00   2
    你这个 excel 表就能很快实现,一共也没多少数据
    Scorpiocat
        10
    Scorpiocat  
    OP
       2020-12-14 16:22:56 +08:00
    @princelai #9 厉害!谢谢!自己刚开始学,就想着实战了...
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     5275 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 29ms UTC 05:51 PVG 13:51 LAX 22:51 JFK 01:51
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86