一文搞清二分查找算法的各种细节 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
fudonglai
V2EX    LeetCode

一文搞清二分查找算法的各种细节

  •  
  •   fudonglai 2020-02-23 15:49:48 +08:00 7582 次点击
    这是一个创建于 2123 天前的主题,其中的信息可能已经有所发展或是发生改变。

    先给大家讲个笑话乐呵一下:

    有一天阿东到图书馆借了 N 本书,出图书馆的时候,警报响了,于是保安把阿东拦下,要检查一下哪本书没有登记出借。阿东正准备把每一本书在报警器下过一下,以找出引发警报的书,但是保安露出不屑的眼神:你连二分查找都不会吗?于是保安把书分成两堆,让第一堆过一下报警器,报警器响;于是再把这堆书分成两堆…… 最终,检测了 logN 次之后,保安成功的找到了那本引起警报的书,露出了得意和嘲讽的笑容。于是阿东背着剩下的书走了。

    从,图书馆丢了 N - 1 本书。

    二分查找真的很简单吗?并不简单。看看 Knuth 大佬(发明 KMP 算法的那位)怎么说的:

    Although the basic idea of binary search is comparatively straightforward, the details can be surprisingly tricky..、

    这句话可以这样理解:思路很简单,细节是魔鬼。

    本文就来探究几个最常用的二分查找场景:寻找一个数、寻找左侧边界、寻找右侧边界。而且,我们就是要深入细节,比如不等号是否应该带等号,mid 是否应该加一等等。分析这些细节的差异以及出现这些差异的原因,保证你能灵活准确地写出正确的二分查找算法。

    零、二分查找框架

    int binarySearch(int[] nums, int target) { int left = 0, right = ...; while(...) { int mid = left + (right - left) / 2; if (nums[mid] == target) { ... } else if (nums[mid] < target) { left = ... } else if (nums[mid] > target) { right = ... } } return ...; } 

    分析二分查找的一个技巧是:不要出现 else,而是把所有情况用 else if 写清楚,这样可以清楚地展现所有细节。本文都会使用 else if,旨在讲清楚,读者理解后可自行简化。

    其中 ... 标记的部分,就是可能出现细节问题的地方,当你见到一个二分查找的代码时,首先注意这几个地方。后文用实例分析这些地方能有什么样的变化。

    另外声明一下,计算 mid 时需要技巧防止溢出,不要用 (left + right) / 2,而是要用 left + (right - left) / 2

    一、寻找一个数(基本的二分搜索)

    这个场景是最简单的,肯能也是大家最熟悉的,即搜索一个数,如果存在,返回其索引,否则返回 -1。

    int binarySearch(int[] nums, int target) { int left = 0; int right = nums.length - 1; // 注意 while(left <= right) { int mid = left + (right - left) / 2; if(nums[mid] == target) return mid; else if (nums[mid] < target) left = mid + 1; // 注意 else if (nums[mid] > target) right = mid - 1; // 注意 } return -1; } 

    1、为什么 while 循环的条件中是 <=,而不是 < ?

    答:因为初始化 right 的赋值是 nums.length - 1,即最后一个元素的索引,而不是 nums.length。

    这二者可能出现在不同功能的二分查找中,区别是:前者相当于两端都闭区间 [left, right],后者相当于左闭右开区间 [left, right),因为索引大小为 nums.length 是越界的。

    我们这个算法中使用的是前者 [left, right] 两端都闭的区间。这个区间其实就是每次进行搜索的区间

    什么时候应该停止搜索呢?当然,找到了目标值的时候可以终止:

     if(nums[mid] == target) return mid; 

    但如果没找到,就需要 while 循环终止,然后返回 -1。那 while 循环什么时候应该终止?搜索区间为空的时候应该终止,意味着你没得找了,就等于没找到嘛。

    while(left <= right) 的终止条件是 left == right + 1,写成区间的形式就是 [right + 1, right],或者带个具体的数字进去 [3, 2],可见这时候区间为空,因为没有数字既大于等于 3 又小于等于 2 的吧。所以这时候 while 循环终止是正确的,直接返回 -1 即可。

    while(left < right) 的终止条件是 left == right,写成区间的形式就是 [left, right],或者带个具体的数字进去 [2, 2],这时候区间非空,还有一个数 2,但此时 while 循环终止了。也就是说这区间 [2, 2] 被漏掉了,索引 2 没有被搜索,如果这时候直接返回 -1 就是错误的。

    当然,如果你非要用 while(left < right) 也可以,我们已经知道了出错的原因,就打个补丁好了:

     //... while(left < right) { // ... } return nums[left] == target ? left : -1; 

    2、为什么 left = mid + 1,right = mid - 1 ?我看有的代码是 right = mid 或者 left = mid,没有这些加加减减,到底怎么回事,怎么判断?

    答:这也是二分查找的一个难点,不过只要你能理解前面的内容,就能够很容易判断。

    刚才明确了「搜索区间」这个概念,而且本算法的搜索区间是两端都闭的,即 [left, right]。那么当我们发现索引 mid 不是要找的 target 时,如何确定下一步的搜索区间呢?

    当然是 [left, mid - 1] 或者 [mid + 1, right] 对不对?因为 mid 已经搜索过,应该从搜索区间中去除。

    3、此算法有什么缺陷?

    答:至此,你应该已经掌握了该算法的所有细节,以及这样处理的原因。但是,这个算法存在局限性。

    比如说给你有序数组 nums = [1,2,2,2,3],target = 2,此算法返回的索引是 2,没错。但是如果我想得到 target 的左侧边界,即索引 1,或者我想得到 target 的右侧边界,即索引 3,这样的话此算法是无法处理的。

    这样的需求很常见。你也许会说,找到一个 target,然后向左或向右线性搜索不行吗?可以,但是不好,因为这样难以保证二分查找对数级的复杂度了。

    我们后续的算法就来讨论这两种二分查找的算法。

    二、寻找左侧边界的二分搜索

    直接看代码,其中的标记是需要注意的细节:

    int left_bound(int[] nums, int target) { if (nums.length == 0) return -1; int left = 0; int right = nums.length; // 注意 while (left < right) { // 注意 int mid = left + (right - left) / 2; if (nums[mid] == target) { right = mid; } else if (nums[mid] < target) { left = mid + 1; } else if (nums[mid] > target) { right = mid; // 注意 } } return left; } 

    1、为什么 while(left < right) 而不是 <= ?

    答:用相同的方法分析,因为 right = nums.length 而不是 nums.length - 1。因此每次循环的「搜索区间」是 [left, right) 左闭右开。

    while(left < right) 终止的条件是 left == right,此时搜索区间 [left, left) 为空,所以可以正确终止。

    2、为什么没有返回 -1 的操作?如果 nums 中不存在 target 这个值,怎么办?

    答:因为要一步一步来,先理解一下这个「左侧边界」有什么特殊含义:

    对于这个数组,算法会返回 1。这个 1 的含义可以这样解读:nums 中小于 2 的元素有 1 个。

    比如对于有序数组 nums = [2,3,5,7], target = 1,算法会返回 0,含义是:nums 中小于 1 的元素有 0 个。

    再比如说 nums 不变,target = 8,算法会返回 4,含义是:nums 中小于 8 的元素有 4 个。

    综上可以看出,函数的返回值(即 left 变量的值)取值区间是闭区间 [0, nums.length],所以我们简单添加两行代码就能在正确的时候 return -1:

    while (left < right) { //... } // target 比所有数都大 if (left == nums.length) return -1; // 类似之前算法的处理方式 return nums[left] == target ? left : -1; 

    1、为什么 left = mid + 1,right = mid ?和之前的算法不一样?

    答:这个很好解释,因为我们的「搜索区间」是 [left, right) 左闭右开,所以当 nums[mid] 被检测之后,下一步的搜索区间应该去掉 mid 分割成两个区间,即 [left, mid) 或 [mid + 1, right)。

    4、为什么该算法能够搜索左侧边界?

    答:关键在于对于 nums[mid] == target 这种情况的处理:

     if (nums[mid] == target) right = mid; 

    可见,找到 target 时不要立即返回,而是缩小「搜索区间」的上界 right,在区间 [left, mid) 中继续搜索,即不断向左收缩,达到锁定左侧边界的目的。

    5、为什么返回 left 而不是 right ?

    答:都是一样的,因为 while 终止的条件是 left == right。

    三、寻找右侧边界的二分查找

    寻找右侧边界和寻找左侧边界的代码差不多,只有两处不同,已标注:

    int right_bound(int[] nums, int target) { if (nums.length == 0) return -1; int left = 0, right = nums.length; while (left < right) { int mid = left + (right - left) / 2; if (nums[mid] == target) { left = mid + 1; // 注意 } else if (nums[mid] < target) { left = mid + 1; } else if (nums[mid] > target) { right = mid; } } return left - 1; // 注意 } 

    1、为什么这个算法能够找到右侧边界?

    答:类似地,关键点还是这里:

     if (nums[mid] == target) { left = mid + 1; 

    当 nums[mid] == target 时,不要立即返回,而是增大「搜索区间」的下界 left,使得区间不断向右收缩,达到锁定右侧边界的目的。

    2、为什么最后返回 left - 1 而不像左侧边界的函数,返回 left ?而且我觉得这里既然是搜索右侧边界,应该返回 right 才对。

    答:首先,while 循环的终止条件是 left == right,所以 left 和 right 是一样的,你非要体现右侧的特点,返回 right - 1 好了。

    至于为什么要减一,这是搜索右侧边界的一个特殊点,关键在这个条件判断:

     if (nums[mid] == target) { left = mid + 1; // 这样想: mid = left - 1 

    因为我们对 left 的更新必须是 left = mid + 1,就是说 while 循环结束时,nums[left] 一定不等于 target 了,而 nums[left-1] 可能是 target。

    至于为什么 left 的更新必须是 left = mid + 1,同左侧边界搜索,就不再赘述。

    1、为什么没有返回 -1 的操作?如果 nums 中不存在 target 这个值,怎么办?

    答:类似之前的左侧边界搜索,因为 while 的终止条件是 left == right,就是说 left 的取值范围是 [0, nums.length],所以可以添加两行代码,正确地返回 -1:

    while (left < right) { // ... } if (left == 0) return -1; return nums[left-1] == target ? (left-1) : -1; 

    四、最后总结

    来梳理一下这些细节差异的因果逻辑:

    第一个,最基本的二分查找算法:

    因为我们初始化 right = nums.length - 1 所以决定了我们的「搜索区间」是 [left, right] 所以决定了 while (left <= right) 同时也决定了 left = mid+1 和 right = mid-1 因为我们只需找到一个 target 的索引即可 所以当 nums[mid] == target 时可以立即返回 

    第二个,寻找左侧边界的二分查找:

    因为我们初始化 right = nums.length 所以决定了我们的「搜索区间」是 [left, right) 所以决定了 while (left < right) 同时也决定了 left = mid + 1 和 right = mid 因为我们需找到 target 的最左侧索引 所以当 nums[mid] == target 时不要立即返回 而要收紧右侧边界以锁定左侧边界 

    第三个,寻找右侧边界的二分查找:

    因为我们初始化 right = nums.length 所以决定了我们的「搜索区间」是 [left, right) 所以决定了 while (left < right) 同时也决定了 left = mid + 1 和 right = mid 因为我们需找到 target 的最右侧索引 所以当 nums[mid] == target 时不要立即返回 而要收紧左侧边界以锁定右侧边界 又因为收紧左侧边界时必须 left = mid + 1 所以最后无论返回 left 还是 right,必须减一 

    如果以上内容你都能理解,那么恭喜你,二分查找算法的细节不过如此。

    通过本文,你学会了:

    1、分析二分查找代码时,不要出现 else,全部展开成 else if 方便理解。

    2、注意「搜索区间」和 while 的终止条件,如果存在漏掉的元素,记得在最后检查。

    3、如需要搜索左右边界,只要在 nums[mid] == target 时做修改即可。搜索右侧时需要减一。

    近期文章

    学习数据结构和 LeetCode 的刷题指南

    滑动窗口( sliding window )解题套路详解

    动态规划解题套路详解

    经典动态规划:编辑距离

    回溯算法套路详解

    最后,我写了将近 70 篇原创算法文章介绍算法技巧,绝不是简单的代码堆砌,适用于面试和 LeetCode 刷题,可以在我的 gitbook 在看查看。文章的 Github 仓库地址 fucking-algorithm,觉得不错的话可以给个 star。

    PS:我最近精心制作了一份电子书《 labuladong 的算法小抄》,分为「动态规划」「数据结构」「算法思维」「高频面试」四个章节,共 60 多篇原创文章,绝对精品,如有需要,可扫码到我的公众号 labuladong 后台回复关键词「 pdf 」即可下载:

    目录

    2 条回复    2020-02-24 06:30:06 +08:00
    lhx2008
        1
    lhx2008  
       2020-02-23 16:35:38 +08:00 via Android
    细节不是魔鬼,框架不对的时候才是
    zhuyuuyuhz
        2
    zhuyuuyuhz  
       2020-02-24 06:30:06 +08:00 via iPhone
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     5145 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 35ms UTC 01:28 PVG 09:28 LAX 17:28 JFK 20:28
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86