深度学习模型部署问题 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
推荐学习书目
Learn Python the Hard Way
Python Sites
PyPI - Python Package Index
http://diveintopython.org/toc/index.html
Pocoo
值得关注的项目
PyPy
Celery
Jinja2
Read the Docs
gevent
pyenv
virtualenv
Stackless Python
Beautiful Soup
结巴中文分词
Green Unicorn
Sentry
Shovel
Pyflakes
pytest
Python 编程
pep8 Checker
Styles
PEP 8
Google Python Style Guide
Code Style from The Hitchhiker's Guide
shicheng1993
V2EX    Python

深度学习模型部署问题

  •  1
     
  •   shicheng1993 2019-12-18 10:58:19 +08:00 5242 次点击
    这是一个创建于 2130 天前的主题,其中的信息可能已经有所发展或是发生改变。

    1.当我使用多进程并行启动模型的时候( pytorch 或者 tf 或者 keras ),显存或者内存的占用都是翻倍的,这种并行能够理解.
    2.当我在主进程启动模型并使用多线程去同时 fit 或者 predict 时,这时会发生什么呢?

    ( 1 )有一种锁的机制,哪个线程拿到锁就进行推理,之后进行下一个线程的推理,实际上的串行。
    ( 2 )模型内部类似于函数调用,虽然有 GIL 但是每个线程的推理是实际上的并行,推理速度变慢,但都在慢慢进行。
    另外当这个模型是使用 GPU 进行运算的时候,上面的情形下的处理逻辑是一样的吗? 请大佬指点

    5 条回复    2019-12-21 23:39:38 +08:00
    Latin
        1
    Latin &nbp;
       2019-12-18 11:18:11 +08:00
    用 gpu 只会加快算法处理速度,不会加快线程运行
    lonelygo
        2
    lonelygo  
       2019-12-18 11:22:33 +08:00
    shicheng1993
        3
    shicheng1993  
    OP
       2019-12-18 12:02:38 +08:00
    谢谢两位
    @Latin 额,我问的不是这个。是模型与进程线程并发之间的关系,不是运算速度。
    @lonelygo tf 的 serving 这个会用,但是 rpc 调用时,传输预处理后的数据,相对于运算量开销太大,没有使用。他这个是黑箱,不能解决我上面手动部署中的疑问。
    yangyaofei
        4
    yangyaofei  
       2019-12-18 13:04:04 +08:00
    GPU 内部已经把处理都拆成无数个线程了,感觉多线程意义不大...
    如果是多线程的话,我觉得是计算的时候 python block,然后后端是并行的,所以看起来应该是并行的样子,但是 GPU 资源有限,最终没啥区别.用 tf serving 还是最理想的办法....不用处理 batching,优先级等等的问题
    tedeyang
        5
    tedeyang  
       2019-12-21 23:39:38 +08:00
    CPU 主进程加载模型,其他线程调用,这种情况下推理计算是串行的。就是传统的并发问题,你可以用 openvino/opencl 来做并行编程。
    GPU 任何时间点基本只做一个模型的 predict,但模型内调用的 cuda 是有上万个 core 并行计算。
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     5614 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 32ms UTC 06:38 PVG 14:38 LAX 23:38 JFK 02:38
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86