机器学习的知识框架是什么样的? - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
winiex
V2EX    机器学习

机器学习的知识框架是什么样的?

  •  
  •   winiex 2013-02-24 18:06:41 +08:00 3494 次点击
    这是一个创建于 4610 天前的主题,其中的信息可能已经有所发展或是发生改变。
    最近因为毕业设计的原因,在研究 Machine Learning 相关的东西。到现在为止算是刚刚入了个门,但是由于不知道这个课题内的知识结构是怎样的,所以有种身在此山中迷惑感。

    有 V2EXer 是在做这方面的研究工作吗?求推荐介绍该领域知识框架的文章,必感谢~。

    我找过一些,但是皆无果,所以很郁闷啊。或许这个领域还没有人做过总结整体知识框架的工作么==?

    其它有价值的东西也求推荐啊,必感谢~。
    20 条回复    1970-01-01 08:00:00 +08:00
    Livid
        1
    Livid  
    MOD
    PRO
       2013-02-24 18:09:18 +08:00
    帮你 cc @clowwindy
    winiex
        2
    winiex  
    OP
       2013-02-24 18:12:26 +08:00
    @Livid 谢谢你~!
    forest520
        3
    forest520  
       2013-02-24 18:14:13 +08:00 via Android   1
    推荐两本书吧,李航的统计机器学习和刘斌的web数据挖掘
    Asimov
        4
    Asimov  
       2013-02-24 18:21:06 +08:00   2
    winiex
        5
    winiex  
    OP
       2013-02-24 18:34:11 +08:00
    @forest520
    谢谢推荐!

    我记得有评价说第一本书是国内质量的上乘之作了,不过还没有看过~。我入门看的 Mitchell 的 Machine Learning[1]。这本书数学知识设计的比较少,感觉挺不错啊!

    我也找过介绍机器学习领域框架的专著过,但是还没发现比较满意的。听过搞学术的过程中,奠定一块领域的学术体系是超大的贡献之一,类似于 TAOCP 便做了算法与可计算领域这块的工作在这之前相关的研究只是零零散散,不得章法。

    现在研究机器学习的东西,就有这种感觉涉略到的书的知识介绍是不得章法的(或许是我看的太少了还 :) )。

    譬如,一个具体的问题就是,机器学习领域的细化分类是怎样的呢?单单就说监督、非监督、半监督,或者贝叶斯派、神经网络派虾米的,还是太笼统了点。暂时还找不到一个很权威的说法啊!

    @Asimov
    多谢~。这俩答案很赞,之前已经看过啦~,很有启发性。不过貌似没有解决我的疑惑 :)。

    [1] http://book.douban.com/subject/2252153/
    clowwindy
        6
    clowwindy  
       2013-02-24 19:16:10 +08:00   1
    这个领域还在不断发展,恐怕没有一种权威的划分方法。只是大体了解一下有哪些研究方向的话,维基百科上已经写的不错了:

    http://en.wikipedia.org/wiki/Machine_learning
    lookhi
        7
    lookhi  
       2013-02-24 19:42:37 +08:00
    @winiex 最近因为毕业设计的原因,在研究 Machine Learning 相关的东西。到现在为止算是刚刚入了个门。还来的及吗?时间太短了吧。
    ayang23
        8
    ayang23  
       2013-02-24 20:08:40 +08:00   1
    《模式分类》很经典的书,很容易理解。
    winiex
        9
    winiex  
    OP
       2013-02-24 20:26:41 +08:00
    @clowwindy
    维基页面的质量很高,谢谢你!请问能不能给类似于我这样刚入门的童鞋一些初学建议或者指引啊?多谢了!

    @lookhi
    我和你是一样的情况啊,就刚寒假开始整的。一些英文专著写的很通俗易懂,慢慢读就行了,来得及的!如果只求见木不见林的话,理解那些常用算法就算入门了。你可以参看这份书单[1]。

    @ayang23
    你是说这本书[2]吗?还是 PRML[3] 啊?

    [1] http://book.douban.com/doulist/176513/
    [2] http://book.douban.com/subject/4603803/
    [3] http://book.douban.com/subject/2061116/
    clowwindy
        10
    clowwindy  
       2013-02-24 20:39:22 +08:00
    @winiex

    Andrew Ng 的录像和 notes

    http://v.163.com/special/opencourse/machinelearning.html
    http://cs229.stanford.edu/materials.html

    另外找一些数据动手实验一下吧。把标数据、提特征、训练、测试整个自己走一遍,会更有感觉一些。
    winiex
        11
    winiex  
    OP
       2013-02-24 20:51:23 +08:00
    @clowwindy
    Andrew Ng 的视频公开课确实非常经典~。

    如果做数据测试的话,该怎么做呢?我搜到过一个叫做 weka[1] 的工具,它可以用来进行试验。还有其它类似的工具集吗?

    Weka 是用 Java 来进行测试的。听说也有 python、R 的,另外,最流行的貌似是 Matlab 啊,Andrew Ng 的课程就是用它来做作业的~。

    [1] http://www.cs.waikato.ac.nz/ml/weka/
    clowwindy
        12
    clowwindy  
       2013-02-24 21:10:53 +08:00
    @winiex 都可以的,看用什么顺手了
    ztpk
        13
    ztpk  
       2013-02-25 04:03:33 +08:00
    斯坦福CS229是很好的参考嘛,参考其讲义 http://cs229.stanford.edu/ 另外Coursera上有视频。 最近在上这门课,发现越学的深入越会觉得数学捉急,懂统计线代和一点多元微积分可能会对学习有所帮助。另外微软大牛Christopher M. Bishop的pattern recognition and machine learning也可参考。个人认为斯坦福机器学习的讲义全搞懂就算是有个知识框架了。
    Ultratude
        14
    Ultratude  
       2013-02-25 06:48:30 +08:00
    毕业设计?这么早。
    Ultratude
        15
    Ultratude  
       2013-02-25 06:56:06 +08:00
    @Ultratude 看错楼主了,认成别人了。
    sxyclint
        16
    sxyclint  
       2013-02-25 07:45:36 +08:00 via iPhone
    刘未鹏博客有推荐
    ayang23
        17
    ayang23  
       2013-02-25 10:57:07 +08:00
    aurora1625
        18
    aurora1625  
       2013-03-02 21:57:16 +08:00   2
    4楼回复内容里面的两个链接都是出自我手,我在知乎上面也回答了其他和机器学习相关的内容,你可以顺便看看。

    如果说框架性的内容,任何一本教材都会告诉你框架的内容。无论你是本科毕设还是硕士毕设,都会是一个很具体的问题,应该不会涉及到框架上的东西。

    至于迷惑感,我读书好多年了,我至今仍旧有迷惑感。机器学习发展太快了,半年一年不跟国际会议,再去看大家都在干嘛的时候就已经云里雾里的了,等你明白过来怎么回事,大家又都开始扑向另外的热点了。所以,还是别迷惑了,抓住具体的东西,像@clowwindy 说的一样
    “找一些数据动手实验一下吧。把标数据、提特征、训练、测试整个自己走一遍,会更感觉一些。”

    至于你说的什么频数学派和贝叶斯学派,这两个学派打仗都打了好几十年了,没人能说明白。而且你入行就纠结这些,容易走火入魔的。先动手,把自己的小问题解决好,打好内功才是要义。
    winiex
        19
    winiex  
    OP
       2013-03-03 17:21:05 +08:00
    @aurora1625
    多谢指教!

    最近正在按照各位前辈的指教,跑数据做实验呢,对于具体的一些算法有了比仅仅看书更为深刻的理解!

    如果一个领域的知识,让人刚开始就能有一个全局层面上的了解,就能够对自己所做的工作有更实在的把握,知道自己在干什么。Coding 的时候一般都有一个知识层级告诉我,所以我觉得自己做起来还是很踏实的感觉,而忽然开始研究这样一个正在发展的领域,自己摸不着自己所做的工作的性质,确实很迷惑啊 :(。

    或许这就是工程和科研之间的区别之一吧 :)。

    希望以后有问题了能够继续请教你,请问可以吗?
    aurora1625
        20
    aurora1625  
       2013-03-03 19:03:26 +08:00
    @winiex of course
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     3441 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 26ms UTC 05:05 PVG 13:05 LAX 22:05 JFK 01:05
    Do have faith in what you're doing.
    ubao snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86