给定一个二维的矩阵,包含 'X'
和 'O'
(字母 O)。
找到所有被 'X'
围绕的区域,并将这些区域里所有的 'O'
用 'X'
填充。
示例:
X X X X X O O X X X O X X O X X
运行你的函数后,矩阵变为:
X X X X X X X X X X X X X O X X
解释:
被围绕的区间不会存在于边界上,换句话说,任何边界上的 'O'
都不会被填充为 'X'
。 任何不在边界上,或不与边界上的 'O'
相连的 'O'
最终都会被填充为 'X'
。如果两个元素在水平或垂直方向相邻,则称它们是“相连”的。
这道题我们拿到基本就可以确定是图的 dfs、bfs 遍历的题目了。题目中解释说被包围的区间不会存在于边界上,所以我们会想到边界上的 o 要特殊处理,只要把边界上的 o 特殊处理了,那么剩下的 o 替换成 x 就可以了。问题转化为,如何寻找和边界联通的 o,我们需要考虑如下情况。
X X X X X O O X X X O X X O O X
这时候的 o 是不做替换的。因为和边界是连通的。为了记录这种状态,我们把这种情况下的 o 换成#作为占位符,待搜索结束之后,遇到 o 替换为 x (和边界不连通的 o);遇到#,替换回 o(和边界连通的 o)。
如何寻找和边界联通的 o? 从边界出发,对图进行 dfs 和 bfs 即可。这里简单总结下 dfs 和 dfs。
那么基于上面这种想法,我们有四种方式实现。
class Solution { public void solve(char[][] board) { if (board == null || board.length == 0) return; int m = board.length; int n = board[0].length; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { // 从边缘 o 开始搜索 boolean isEdge = i == 0 || j == 0 || i == m - 1 || j == n - 1; if (isEdge && board[i][j] == 'O') { dfs(board, i, j); } } } for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (board[i][j] == 'O') { board[i][j] = 'X'; } if (board[i][j] == '#') { board[i][j] = 'O'; } } } } public void dfs(char[][] board, int i, int j) { if (i < 0 || j < 0 || i >= board.length || j >= board[0].length || board[i][j] == 'X' || board[i][j] == '#') { // board[i][j] == '#' 说明已经搜索过了. return; } board[i][j] = '#'; dfs(board, i - 1, j); // 上 dfs(board, i + 1, j); // 下 dfs(board, i, j - 1); // 左 dfs(board, i, j + 1); // 右 } }
非递归的方式,我们需要记录每一次遍历过的位置,我们用 stack 来记录,因为它先进后出的特点。而位置我们定义一个内部类 Pos 来标记横坐标和纵坐标。注意的是,在写非递归的时候,我们每次查看 stack 顶,但是并不出 stack,直到这个位置上下左右都搜索不到的时候出 Stack。
class Solution { public class Pos{ int i; int j; Pos(int i, int j) { this.i = i; this.j = j; } } public void solve(char[][] board) { if (board == null || board.length == 0) return; int m = board.length; int n = board[0].length; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { // 从边缘第一个是 o 的开始搜索 boolean isEdge = i == 0 || j == 0 || i == m - 1 || j == n - 1; if (isEdge && board[i][j] == 'O') { dfs(board, i, j); } } } for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (board[i][j] == 'O') { board[i][j] = 'X'; } if (board[i][j] == '#') { board[i][j] = 'O'; } } } } public void dfs(char[][] board, int i, int j) { Stack<Pos> stack = new Stack<>(); stack.push(new Pos(i, j)); board[i][j] = '#'; while (!stack.isEmpty()) { // 取出当前 stack 顶, 不弹出. Pos current = stack.peek(); // 上 if (current.i - 1 >= 0 && board[current.i - 1][current.j] == 'O') { stack.push(new Pos(current.i - 1, current.j)); board[current.i - 1][current.j] = '#'; continue; } // 下 if (current.i + 1 <= board.length - 1 && board[current.i + 1][current.j] == 'O') { stack.push(new Pos(current.i + 1, current.j)); board[current.i + 1][current.j] = '#'; continue; } // 左 if (current.j - 1 >= 0 && board[current.i][current.j - 1] == 'O') { stack.push(new Pos(current.i, current.j - 1)); board[current.i][current.j - 1] = '#'; continue; } // 右 if (current.j + 1 <= board[0].length - 1 && board[current.i][current.j + 1] == 'O') { stack.push(new Pos(current.i, current.j + 1)); board[current.i][current.j + 1] = '#'; continue; } // 如果上下左右都搜索不到,本次搜索结束,弹出 stack stack.pop(); } } }
dfs 非递归的时候我们用 stack 来记录状态,而 bfs 非递归,我们则用队列来记录状态。和 dfs 不同的是,dfs 中搜索上下左右,只要搜索到一个满足条件,我们就顺着该方向继续搜索,所以你可以看到 dfs 代码中,只要满足条件,就入 Stack,然后 continue 本次搜索,进行下一次搜索,直到搜索到没有满足条件的时候出 stack。而 bfs 中,我们要把上下左右满足条件的都入队,所以搜索的时候就不能 continue。大家可以对比下两者的代码,体会 bfs 和 dfs 的差异。
class Solution { public class Pos{ int i; int j; Pos(int i, int j) { this.i = i; this.j = j; } } public void solve(char[][] board) { if (board == null || board.length == 0) return; int m = board.length; int n = board[0].length; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { // 从边缘第一个是 o 的开始搜索 boolean isEdge = i == 0 || j == 0 || i == m - 1 || j == n - 1; if (isEdge && board[i][j] == 'O') { bfs(board, i, j); } } } for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (board[i][j] == 'O') { board[i][j] = 'X'; } if (board[i][j] == '#') { board[i][j] = 'O'; } } } } public void bfs(char[][] board, int i, int j) { Queue<Pos> queue = new LinkedList<>(); queue.add(new Pos(i, j)); board[i][j] = '#'; while (!queue.isEmpty()) { Pos current = queue.poll(); // 上 if (current.i - 1 >= 0 && board[current.i - 1][current.j] == 'O') { queue.add(new Pos(current.i - 1, current.j)); board[current.i - 1][current.j] = '#'; // 没有 continue. } // 下 if (current.i + 1 <= board.length - 1 && board[current.i + 1][current.j] == 'O') { queue.add(new Pos(current.i + 1, current.j)); board[current.i + 1][current.j] = '#'; } // 左 if (current.j - 1 >= 0 && board[current.i][current.j - 1] == 'O') { queue.add(new Pos(current.i, current.j - 1)); board[current.i][current.j - 1] = '#'; } // 右 if (current.j + 1 <= board[0].length - 1 && board[current.i][current.j + 1] == 'O') { queue.add(new Pos(current.i, current.j + 1)); board[current.i][current.j + 1] = '#'; } } } }
bfs 一般我们不会去涉及,而且比较绕,之前我们唯一 A 过的用 bfs 递归的方式是层序遍历二叉树的时候可以用递归的方式。
并查集这种数据结构好像大家不太常用,实际上很有用,我在实际的 production code 中用过并查集。并查集常用来解决连通性的问题,即将一个图中连通的部分划分出来。当我们判断图中两个点之间是否存在路径时,就可以根据判断他们是否在一个连通区域。 而这道题我们其实求解的就是和边界的 O 在一个连通区域的的问题。
并查集的思想就是,同一个连通区域内的所有点的根节点是同一个。将每个点映射成一个数字。先假设每个点的根节点就是他们自己,然后我们以此输入连通的点对,然后将其中一个点的根节点赋成另一个节点的根节点,这样这两个点所在连通区域又相互连通了。 并查集的主要操作有:
find(int m):这是并查集的基本操作,查找 m 的根节点。
isConnected(int m,int n):判断 m,n 两个点是否在一个连通区域。
union(int m,int n):合并 m,n 两个点所在的连通区域。
class UnionFind { int[] parents; public UnionFind(int totalNodes) { parents = new int[totalNodes]; for (int i = 0; i < totalNodes; i++) { parents[i] = i; } } // 合并连通区域是通过 find 来操作的, 即看这两个节点是不是在一个连通区域内. void union(int node1, int node2) { int root1 = find(node1); int root2 = find(node2); if (root1 != root2) { parents[root2] = root1; } } int find(int node) { while (parents[node] != node) { // 当前节点的父节点 指向父节点的父节点. // 保证一个连通区域最终的 parents 只有一个. parents[node] = parents[parents[node]]; node = parents[node]; } return node; } boolean isConnected(int node1, int node2) { return find(node1) == find(node2); } }
我们的思路是把所有边界上的 O 看做一个连通区域。遇到 O 就执行并查集合并操作,这样所有的 O 就会被分成两类
由于并查集我们一般用一维数组来记录,方便查找 parants,所以我们将二维坐标用 node 函数转化为一维坐标。
public void solve(char[][] board) { if (board == null || board.length == 0) return; int rows = board.length; int cols = board[0].length; // 用一个虚拟节点, 边界上的 O 的父节点都是这个虚拟节点 UnionFind uf = new UnionFind(rows * cols + 1); int dummyNode = rows * cols; for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { if (board[i][j] == 'O') { // 遇到 O 进行并查集操作合并 if (i == 0 || i == rows - 1 || j == 0 || j == cols - 1) { // 边界上的 O,把它和 dummyNode 合并成一个连通区域. uf.union(node(i, j), dummyNode); } else { // 和上下左右合并成一个连通区域. if (i > 0 && board[i - 1][j] == 'O') uf.union(node(i, j), node(i - 1, j)); if (i < rows - 1 && board[i + 1][j] == 'O') uf.union(node(i, j), node(i + 1, j)); if (j > 0 && board[i][j - 1] == 'O') uf.union(node(i, j), node(i, j - 1)); if (j < cols - 1 && board[i][j + 1] == 'O') uf.union(node(i, j), node(i, j + 1)); } } } } for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { if (uf.isConnected(node(i, j), dummyNode)) { // 和 dummyNode 在一个连通区域的,那么就是 O ; board[i][j] = 'O'; } else { board[i][j] = 'X'; } } } } int node(int i, int j) { return i * cols + j; } }
![]() | 1 CEBBCAT 2019-05-26 01:22:25 +08:00 via Android 建议标题起得有代表性一些,不知你是提问还是分享。 比较好奇,这文章里的代码是您的吗? |