kmeans 算法,距离改用余弦相似度, Python 实现。 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
allenwuli
V2EX    机器学习

kmeans 算法,距离改用余弦相似度, Python 实现。

  •  
  •   allenwuli 2019-05-06 14:14:21 +08:00 7661 次点击
    这是一个创建于 2416 天前的主题,其中的信息可能已经有所发展或是发生改变。

    如题,有大佬写过这个算法吗? sklearn 中的 kmeans 算法用的是欧式离,且不支持修改。

    4 条回复    2019-05-07 09:50:19 +08:00
    SleipniR
        1
    SleipniR  
       2019-05-06 14:31:05 +08:00   1
    allenwuli
        2
    allenwuli  
    OP
       2019-05-06 14:44:06 +08:00
    @SleipniR 先谢谢大佬,我咋打不开链接呢。
    SleipniR
        3
    SleipniR  
       2019-05-06 15:46:17 +08:00   1
    好像需要梯子:

    from sklearn.cluster import k_means_
    from sklearn.metrics.pairwise import cosine_similarity, pairwise_distances
    from sklearn.preprocessing import StandardScaler


    def create_cluster(sparse_data, nclust = 10):

    # Manually override euclidean
    def euc_dist(X, Y = None, Y_norm_squared = None, squared = False):
    #return pairwise_distances(X, Y, metric = 'cosine', n_jobs = 10)
    return cosine_similarity(X, Y)
    k_means_.euclidean_distances = euc_dist

    scaler = StandardScaler(with_mean=False)
    sparse_data = scaler.fit_transform(sparse_data)
    kmeans = k_means_.KMeans(n_clusters = nclust, n_jobs = 20, random_state = 3425)
    _ = kmeans.fit(sparse_data)
    return kmeans.labels_
    allenwuli
        4
    allenwuli  
    OP
       2019-05-07 09:50:19 +08:00
    @SleipniR 大佬,我看了下这个算法
    def euc_dist(x, y=None):
    return cosine_similarity(x, y)
    k_means_.euclidean_distances = euc_dist
    这个算法在这步改成用余弦相似度。计算聚类中心是怎么计算的我点进源码也没看明白。能帮我解释一下他是如何计算类中心的吗?谢谢大佬
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     3041 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 42ms UTC 12:48 PVG 20:48 LAX 04:48 JFK 07:48
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86