反向传播算法推导 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
MoModel
V2EX    机器学习

反向传播算法推导

  •  1
     
  •   MoModel 2019-01-19 16:17:45 +08:00 2863 次点击
    这是一个创建于 2456 天前的主题,其中的信息可能已经有所发展或是发生改变。

    反向传播英语:Backpropagation,缩写为 BP )是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。

    假设,你有这样一个网络层

    第一层是输入层,包含两个神经元 $i1$$i2$,和截距项$b1$;第二层是隐含层,包含两个神经元$h1$,$h2$和截距项$b2$,第三层是输出$o1$,$o2$,每条线上标的$wi$是层与层之间连接的权重,激活函数我们默认为 sigmoid 函数。

    现在对他们赋上初值,如下图:

          其中, 输入数据 $i1=0.05$$i2=0.10$;

    输出数据 $o1=0.01$$o2=0.99$;

    初始权重
    $w1=0.15$$w2=0.20$, $w3=0.25$$w4=0.30$; $w5=0.40$$w6=0.45$, $w7=0.50$$w8=0.55$;

    目标:给出输入数据$i1$$i2$(0.05 和 0.10),使输出尽可能与原始输出$o1$,$o2$(0.01 和 0.99)接近。

    前向传播过程

    1. 输入层---->隐含层:

    计算神经元$h1$的输入加权和:

    net_{h1} = w_1 * i_1 + w_2 * i_2 + b_1 * 1 net_{h1} = 0.15 * 0.05 + 0.2 * 0.1 + 0.35 * 1 = 0.3775 

    计算神经元$h1$的输出$o1$:(此处用到激活函数为 sigmoid 函数)

    out_{h1} = \frac{1}{1+e^{-net_{h1}}} = 0.5932 

    同理,可计算神经元 $h2$ 的输出 $o2$

    out_{h2} = 0.5968 

    2. 隐藏层---->输出层:

    net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1 out_{o1} = \frac{1}{1+e^{-net_{o1}}} = 0.7514 

    同样的,计算神经元 o2 的输出

    out_{o2} = 0.7730 

    反向传播过程

    接下来,就可以进行反向传播的计算了

    1. 计算总误差

    E_{total} = E_{o1} + E_{o2} 

    分别计算$o1$,$o2$的误差

    E_{o1} = \frac{1}{2} (target_{o1} - out_{o1})^2 = 0.2748 E_{o2} = \frac{1}{2} (target_{o2} - out_{o2})^2 = 0.0235 
    E_{total} = E_{o1} + E_{o2} = 0.2983 

    2. 隐含层---->输出层的权值更新:

    以权重参数$w5$为例,如果我们想知道$w5$对整体误差产生了多少影响,可以用整体误差对$w5$求偏导求出(链式法则)

    \frac {\partial (E_{total} )}{\partial (w_{5})} = \frac {\partial (E_{total} )}{\partial (out_{o1})} + \frac {\partial (out_{o1} )}{\partial (net_{o1})} + \frac {\partial (net_{o1} )}{\partial (w_{5})} 

    下面的图可以更直观的看清楚误差是怎样反向传播的

    我们分别计算每个式子的值:

    计算 $\frac {\partial (E_{total} )}{\partial (out_{o1})}$

     E_{total} = \frac {1}{2}(target_{o1} - out_{o1} )^2 +\frac {1}{2}(target_{o2} - out_{o2} )^2 
    \frac {\partial (E_{total} )}{\partial (out_{o1})} = - (target_{o1} - out{o1} ) = 0.7414 

    计算 $ \frac {\partial ( out_{o1} )}{\partial (net_{o1})} $

     out_{o1} = \frac{1}{1+e^{-net_{o1}}} \frac {\partial ( out_{o1} )}{\partial (net_{o1})} = out_{o1}(1 - out_{o1} ) = 0.1868 

    计算 $ \frac {\partial ( net_{o1} )}{\partial (w_{5})}$

    net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1 \frac {\partial ( net_{o1} )}{\partial (w_{5})} = out_{h1} = 0.5932 

    最后三者相乘

     \frac {\partial (E_{total} )}{\partial (w_{5})} = \frac {\partial (E_{total} )}{\partial (out_{o1})} * \frac {\partial (out_{o1} )}{\partial (net_{o1})} * \frac {\partial (net_{o1} )}{\partial (w_{5})} = 0.082 

    看看上面的公式,我们发现:

    \frac {\partial (E_{total} )}{\partial (w_{5})} = -(target_{o1}-out_{o1})*out_{o1}(1-out_{o1})*out_{h1} 

    为了表达方便,用$\delta _{o1}$来表示输出层的误差

    \delta _{o1} = \frac {\partial (E_{total} )}{\partial (out_{o1})} + \frac {\partial (out_{o1} )}{\partial (net_{o1})} 
     \delta _{o1} = -(target_{o1}-out_{o1})*out_{o1}(1-out_{o1}) 
     \frac {\partial (E_{total} )}{\partial (w_{5})} = \delta _{o1} *out_{h1} 

    更新$w_5$的值:

     w_5^+ = w_5 - \eta * \frac {\partial (E_{total} )}{\partial (w_{5})} = 0.3589 

    同理,更新 $w_6$,$w_7$,$w_8$

    w_6^+ = 0.4086 
    w_7^+ = 0.5113 
    w_8^+ = 0.5614 

    3.隐含层---->隐含层的权值更新:

    我们可以依照上述的方法计算 $w_1$, $w_2$, $w_3$, $w_4$,方法其实与上面说的差不多,但是有个地方需要变一下。

    在上文计算总误差对 w5 的偏导时,是从:

    $out_{o1}$ -> $net_{o1}$ -> $w_5$

    但是在隐含层之间的权值更新时,是从:

    $out_{h1}$ -> $net_{h1}$ -> $w_1$

    计算 $\frac {\partial (E_{total} )}{\partial (out_{h1})}$

    \frac {\partial (E_{total} )}{\partial (out_{h1})} = \frac {\partial (E_{o1} )}{\partial (out_{h1})} + \frac {\partial (E_{o2} )}{\partial (out_{h1})} 

    先计算$\frac {\partial (E_{o1} )}{\partial (out_{h1})}$

    \frac {\partial (E_{o1} )}{\partial (out_{h1})} = \frac {\partial (E_{o1} )}{\partial (net_{o1})} * \frac {\partial (net_{o1} )}{\partial (out_{h1})} 
     \frac {\partial (E_{o1} )}{\partial (net_{o1})} = \frac {\partial (E_{o1} )}{\partial (out_{o1})} * \frac {\partial (out_{o1} )}{\partial (net_{o1})} = 0.1385 
     net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1 
     \frac {\partial (net_{o1} )}{\partial (out_{h1})} = w_5= 0.40 
    \frac {\partial (E_{o1} )}{\partial (out_{h1})} = \frac {\partial (E_{o1} )}{\partial (net_{o1})} * \frac {\partial (net_{o1} )}{\partial (out_{h1})} = 0.138 * 0.4 = 0.055 

    同理,计算出

     \frac {\partial (E_{o2} )}{\partial (out_{h1})} = -0.019 

    两者相加,得到总值

     \frac {\partial (E_{total} )}{\partial (out_{h1})} = \frac {\partial (E_{o1} )}{\partial (out_{h1})} + \frac {\partial (E_{o2} )}{\partial (out_{h1})} = 0.036 

    再计算 $\frac {\partial (out_{h1} )}{\partial (net_{h1})}$

     out_{h1} = \frac{1}{1+e^{-net_{h1}}} 
     \frac {\partial (out_{h1} )}{\partial (net_{h1})} = out_{h1} *(1-out_{h1}) = 0.2413 

    再计算$ \frac {\partial (net_{h1} )}{\partial (w_{1})} $

     net_{h1} = w_1 * i_1 + w_2 * i_2 + b_1 * 1 \frac {\partial (net_{h1} )}{\partial (w_{1})} = i_1 =0.05 

    最后,三者相乘

     \frac {\partial (E_{total} )}{\partial (w_{1})} = \frac {\partial (E_{total} )}{\partial (out_{h1})} * \frac {\partial (out_{h1} )}{\partial (net_{h1})} * \frac {\partial (net_{h1} )}{\partial (w_{1})} 
     \frac {\partial (E_{total} )}{\partial (w_{1})} = 0.036 * 0.2413 * 0.05 = 0.000438 

    我们更新$w_1$的值

     w_1^+ = w_1 - \eta * \frac {\partial (E_{total} )}{\partial (w_{1})} = 0.1498 

    同理,更新 $w_2$,$w_3$,$w_4$

    w_2^+ = 0.1996 
    w_3^+ = 0.2498 
    w_4^+ = 0.2995 

    这样误差反向传播法就完成了,最后我们再把更新的权值重新计算,不停地迭代.

    完整代码( PC 端查看): http://www.momodel.cn:8899/#/explore/5b84e0098fe30b727acaa360?type=app

    Mo (网址:momodel.cn )是一个支持 Python 的人工智能在线建模平台,能帮助你快速开发训练并部署 AI 应用。期待你的加入。

    3 条回复    2019-04-28 09:46:21 +08:00
    nical
        1
    nical  
       2019-01-21 19:23:54 +08:00
    厉害了,很有帮助
    MoModel
        2
    MoModel  
    OP
       2019-01-21 20:20:33 +08:00
    @nical 不好意思很多公式都乱码了,请直接用 PC 端打开 http://www.momodel.cn:8899/#/explore/5b84e0098fe30b727acaa360?type=app 查看源码
    MoModel
        3
    MoModel  
    OP
       2019-04-28 09:46:21 +08:00
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     885 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 29ms UTC 21:18 PVG 05:18 LAX 14:18 JFK 17:18
    Do have faith in what you're doing.
    ubao snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86