hadoop or spark 大数据去重(10 亿) - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
engineer9
V2EX    Hadoop

hadoop or spark 大数据去重(10 亿)

 
  •   engineer9 2018-07-30 10:03:38 +08:00 7490 次点击
    这是一个创建于 2698 天前的主题,其中的信息可能已经有所发展或是发生改变。

    现有一些社交数据如下,

    id from to 1 A B 2 A C 3 B A 4 C A 

    去重复后如下,

    id from to 1 A B 2 A C 

    尝试的解决方案:
    1、采用 bloomfilter 去重,由于 bloomfilter 本身算法问题,会丢失一些数据;
    2、使用数据库查询然后写入到新表,速度有点慢。
    3、使用 BerkeleyDB ?
    4、使用 hadoop 或者 spark 解决,网上找到的方式几乎都是使用 group by 或者 distinct 但这并不适合我这个场景,如何解决呢?
    头大。。。新手上路。。。

    21 条回复    2018-07-31 11:54:51 +08:00
    zjxzhqq
        1
    zjxzhqq  
       2018-07-30 10:29:25 +08:00 via Android
    很简单吧你把后两个字段排下序,然后根据这两个字段去重就可以了
    bsidb
        2
    bsidb  
       2018-07-30 10:37:34 +08:00   1
    这个就是转无向图的过程吧?

    使用 Spark SQL API ( Spark RDD API 的 distinct 有严重的 GC 问题,不推荐)。

    1. 将数据导入 Spark SQL 的表
    2. 将 from 和 to 规则化(确保 from 的顶点 ID 小于 to 的)
    3. 使用 Spark SQL API 进行 distinct 去重
    F281M6Dh8DXpD1g2
        3
    F281M6Dh8DXpD1g2  
       2018-07-30 10:50:21 +08:00 via iPhone
    from 和 to 拼起来再 group by 就行了
    omygod
        4
    omygod  
       2018-07-30 11:00:39 +08:00
    好巧 t/474997
    xwander
        5
    xwander  
       2018-07-30 11:08:49 +08:00
    先用 bloomfilter 判断是否有这段数据,如果有,再进一步使用 md5 判断。
    有时间深入,可以了解下,Online Deduplication。
    https://ieeexplore.ieee.org/document/7996543/
    zhuanggu
        6
    zhuanggu  
       2018-07-30 11:10:47 +08:00 div class="sep5">
    select id, `from`, `to` from( select id, `from`, `to`,row_number() over(partition by `from`,`to` order by id) rk) t where rk=1
    luckychenhaha
        7
    luckychenhaha  
       2018-07-30 11:12:19 +08:00
    from 和 to 做字母排序,然后 hadoop 的 kv 自动匹配就可以了
    BIGUFO
        8
    BIGUFO  
       2018-07-30 11:18:38 +08:00
    @bsidb 请问为什么 sparkSQL 的 distinct api 要比 rdd 的 distinct 好?
    engineer9
        9
    engineer9  
    OP
       2018-07-30 11:26:18 +08:00
    @bsidb 在 spark 中具体怎么规则化? map 这里
    pwrliang
        10
    pwrliang  
       2018-07-30 11:48:34 +08:00 via Android
    尝试实现下 cuckoo hash ? https://en.m.wikipedia.org/wiki/Cuckoo_hashing
    laxenade
        11
    laxenade  
       2018-07-30 11:53:42 +08:00
    map 阶段:让 from < to
    reduce 阶段:做 distinct
    这样不行吗
    owenliang
        12
    owenliang  
       2018-07-30 12:18:40 +08:00
    难道不是构造一个 from_to 的 key,直接走 spark 或者 mr 去重就可以了吗。。
    bsidb
        13
    bsidb  
       2018-07-30 12:24:48 +08:00 via Android
    @BIGUFO RDD 的 distinct 中每一条记录会创建一个对象,10 亿条记录会创建 10 亿个对象,即使集群多机计算,中间生成这么多对象 GC 压力也很大。SQL API 有钨丝计划优化,gc 问题会小很多。
    bsidb
        14
    bsidb  
       2018-07-30 12:26:33 +08:00 via Android
    @engineer9 如果 from > to 则 map 一个( id, to, from )否则 map(id, from, to)
    bsidb
        15
    bsidb  
       2018-07-30 12:28:22 +08:00 via Android
    @engineer9 在导入数据的时候先处理好,再创建 SQL 表比较方便
    dangluren
        16
    dangluren  
       2018-07-30 17:21:39 +08:00
    为什么 spark,hadoop 不适合你们的场景。
    是考虑到 A B B A 无法判断相同? 这种情况可以将每一条看成一个对象,重写 equals 方法啊。
    又或者是考虑到资源不足?
    dangluren
        17
    dangluren  
       2018-07-30 17:28:54 +08:00
    bloomfilter 其实也是可以的, 首先第一步:
    不在里面: 肯定不在里面。
    在里面: 可能不在里面。 这时候,我们并不是把这条数据去掉,而是将这条数据给记录下来,敢肯定的是,由于布隆过滤器的概率,这种数据肯定很少很少。
    下一步:
    将这 10 亿条数据再遍历一次,看看上面保存的数据到底有没有重复。

    这种需求简单的很呐
    dangluren
        18
    dangluren  
       2018-07-30 17:30:41 +08:00
    布隆过滤器的原理和使用参考我之前写的:
    https://blog.csdn.net/t1dmzks/article/details/79212179
    diginWu
        19
    diginWu  
       2018-07-30 17:41:53 +08:00
    百八十 M 的东西内存里面算不就行了么?
    diginWu
        20
    diginWu  
       2018-07-30 17:45:43 +08:00
    不好意思少算了一个数量级。
    kavana
        21
    kavana  
       2018-07-31 11:54:51 +08:00
    hadoop or spark 大数据去重,收藏待用
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     3309 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 27ms UTC 04:51 PVG 12:51 LAX 20:51 JFK 23:51
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86