Python 做拟合后如何让折线变为平滑曲线,用 1d 插值拟合后曲率变大 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
推荐学习书目
Learn Python the Hard Way
Python Sites
PyPI - Python Package Index
http://diveintopython.org/toc/index.html
Pocoo
值得关注的项目
PyPy
Celery
Jinja2
Read the Docs
gevent
pyenv
virtualenv
Stackless Python
Beautiful Soup
结巴中文分词
Green Unicorn
Sentry
Shovel
Pyflakes
pytest
Python 编程
pep8 Checker
Styles
PEP 8
Google Python Style Guide
Code Style from The Hitchhiker's Guide
qile11
V2EX    Python

Python 做拟合后如何让折线变为平滑曲线,用 1d 插值拟合后曲率变大

  •  
  •   qile11 2018-06-30 14:03:23 +08:00 7689 次点击
    这是一个创建于 2659 天前的主题,其中的信息可能已经有所发展或是发生改变。

    代码如下

    import matplotlib.pyplot as plt import numpy as np x = [1,5,30,200] y = [27,12,7,5] x = np.array(x) y = np.array(y) # x = np.arange(1, 17, 1) # y = np.array([4.00, 6.40, 8.00, 8.80, 9.22, 9.50, 9.70, 9.86, 10.00, 10.20, 10.32, 10.42, 10.50, 10.55, 10.58, 10.60]) z1 = np.polyfit(x, y, 3)#用 3 次多项式拟合 p1 = np.poly1d(z1) print(p1) #在屏幕上打印拟合多项式 yvals=p1(x)#也可以使用 yvals=np.polyval(z1,x) plot1=plt.plot(x, y, '*',label='original values') plot2=plt.plot(x, yvals, 'r',label='polyfit values') plt.xlabel('x axis') plt.ylabel('y axis') plt.legend(loc=1)#指定 legend 的位置,读者可以自己 help 它的用法 plt.title('polyfitting') plt.show() 

    使用插值拟合后,产生一个波峰一个波谷,我只想要个平滑的曲线,不知道有啥好办法

    fq1 = interp1d(x, y1, kind='quadratic') fq2 = interp1d(x, y2, kind='zero') 

    下面代码是一个粘度曲线测试程序,请参考程序运行结果

     import numpy as np from scipy.interpolate import interp1d #创建待插值的数据 # x = np.linspace(0, 10*np.pi, 20) # y = np.cos(x) x = [1,5,30,200] # x = [1,100,150,200] y = [27,12,7,5] x = np.array(x) y = np.array([27,12,7,5]) # 分别用 linear 和 quadratic 插值 fl = interp1d(x, y, kind='linear') fq = interp1d(x, y, kind='quadratic') #设置 x 的最大值和最小值以防止插值数据越界 xint = np.linspace(x.max(), x.min(), 200) y1 = np.array([21.350,11,6.62,5.05]) y2 = np.array([15.630,8.31,5.18,3.53]) # x1 = np.array([50,150,200]) # xint1 = np.linspace(x1.min(), x1.max(), 110) yintl = fl(xint) yintq = fq(xint) fq1 = interp1d(x, y1, kind='quadratic') fq2 = interp1d(x, y2, kind='zero') import pylab as pl fig, ax = pl.subplots() # make ticks and tick labels # xticks = range(min(x), max(x) + 1, 3) # xticks = range(1, 200 + 50,30) xticklabels = [1,3,10,"",30,100,200] # #设置网格样式 # ax.set_xticks(xticks) ax.set_xticklabels(xticklabels, rotation=0) ax.grid(True, linestyle='-.',color="b") yfq2=fq2(xint) yfq1=fq1(xint) # pl.plot(xint,fl(xint), color="green", label = "Linear") pl.plot(xint,fq(xint), color="red", label ="Quadratic") pl.plot(xint,yfq1, "b--", label ="QuadraticL") pl.plot(xint,yfq2, color="green", label ="QuadraticH") x3= np.array([1,5,30,200]) y3 = np.array([27,12,7,5]) pl.plot(x3,y3,"b-", label ="QuadraticZ") pl.legend(loc = "best") pl.ylim(1,50,10) pl.xlim(0,200,70) pl.show() 
    4 条回复    2018-07-03 21:51:45 +08:00
    qile1
        1
    qile1  
       2018-07-01 21:57:03 +08:00 via Android
    没人知道?写个函数计算是不是可以实现
    babywhisper
        2
    babywhiper  
       2018-07-02 01:40:27 +08:00
    ```python
    import matplotlib.pyplot as plt
    import numpy as np

    x = np.array([1,5,30,200])
    y = np.array([27,12,7,5])
    plot1=plt.plot(x, y, 'x',label='original values')

    # calculate polynomial
    z = np.polyfit(x, y, 2)
    f = np.poly1d(z)
    x_new = np.linspace(x[0], x[-1], 200)
    y_new = f(x_new)
    plot2=plt.plot(x_new, y_new, 'r',label='polyfit values')

    plt.show()
    ```
    都拿到 3 元函数了, 那就是画图的问题, 多取几个点就好了.
    ---
    但是拟合的曲线会有 overfitting 的问题, 不知道怎么解决.
    ![]( http://p24a7yp7l.bkt.clouddn.com/dd345a805f1425d17d29aea471690113.png)
    qile11
        4
    qile11  
    OP
       2018-07-03 21:51:45 +08:00
    @daya0576
    @Ballacuda
    感谢回复,可能我方向不对,我画的是黏度曲线,不可能出现负数,上面画出来的都有负数,
    [![PE2kbF.md.png]( https://s1.ax1x.com/2018/07/03/PE2kbF.md.png)]( https://imgchr.com/i/PE2kbF)
    [img]https://s1.ax1x.com/2018/07/03/PE2kbF.png[/img]
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     1018 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 23ms UTC 18:36 PVG 02:36 LAX 11:36 JFK 14:36
    Do have faith in what you're doing.
    ubao snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86