vrn:基于直接体积回归的单幅图像大姿态三维人脸重建 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
fendouai_com
V2EX    机器学习

vrn:基于直接体积回归的单幅图像大姿态三维人脸重建

  •  
  •   fendouai_com 2017-09-16 10:36:08 +08:00 2244 次点击
    这是一个创建于 2947 天前的主题,其中的信息可能已经有所发展或是发生改变。
    3D 面部重建是一个非常困难的基本计算机视觉问题。目前的系统通常假设多个面部图像(有时来自同一主题)作为输入的可用性,并且必须解决许多方法学挑战,例如在大的面部姿势,表情和不均匀照明之间建立密集的对应。一般来说,这些方法需要复杂和低效的管道来建模和拟合。在这项工作中,我们提出通过在由 2D 图像和 3D 面部模型或扫描组成的适当数据集上训练卷积神经网络( CNN )来解决许多这些限制。我们的 CNN 只使用一个 2D 面部图像,不需要精确的对准,也不会形成图像之间的密集对应,适用于任意面部姿势和表情,并可用于重建整个 3D 面部几何(包括不可见部分(在训练期间)和拟合(测试期间) 3D 变形模型。我们通过一个简单的 CNN 架构来实现这一点,该架构对单个 2D 图像的 3D 面部几何体的体积表示进行直接回归。我们还展示了如何将面部地标定位的相关任务纳入拟议的框架,并有助于提高重建质量,特别是对于大姿势和面部表情的情况。

    3D face reconstruction is a fundamental Computer Vision problem of extraordinary difficulty. Current systems often assume the availability of multiple facial images (sometimes from the same subject) as input, and must address a number of methodological challenges such as establishing dense correspondences across large facial poses, expressions, and non-uniform illumination. In general these methods require complex and inefficient pipelines for model building and fitting. In this work, we propose to address many of these limitations by training a Convolutional Neural Network (CNN) on an appropriate dataset consisting of 2D images and 3D facial models or scans. Our CNN works with just a single 2D facial image, does not require accurate alignment nor establishes dense correspondence between images, works for arbitrary facial poses and expressions, and can be used to reconstruct the whole 3D facial geometry (including the non-visible parts of the face) bypassing the construction (during training) and fitting (during testing) of a 3D Morphable Model. We achieve this via a simple CNN architecture that performs direct regression of a volumetric representation of the 3D facial geometry from a single 2D image. We also demonstrate how the related task of facial landmark localization can be incorporated into the proposed framework and help improve reconstruction quality, especially for the cases of large poses and facial expressions.

    项目地址: https://github.com/AaronJackson/vrn

    更多人工智能教程: http://www.buluo360.com
    2 条回复    2017-09-19 12:20:16 +08:00
    stebest
        1
    stebest  
       2017-09-16 23:50:23 +08:00
    这个是发在哪个会议上的文章?
    fendouai_com
        2
    fendouai_com  
    OP
       2017-09-19 12:20:16 +08:00
    @stebest 项目网站上有论文地址。
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     5556 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 30ms UTC 08:57 PVG 16:57 LAX 01:57 JFK 04:57
    Do have faith in what you're doing.
    ubao snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86