往 hive 里批量插数据如果大于了 10M 左右就会出错 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
gouchaoer
V2EX    Java

往 hive 里批量插数据如果大于了 10M 左右就会出错

  •  
  •   gouchaoer 2017-07-18 17:23:36 +08:00 4788 次点击
    这是一个创建于 3011 天前的主题,其中的信息可能已经有所发展或是发生改变。

    现在需要把 mysql 里面的数据进行一些脱敏处理,然后往 hive 里面插,我用的 hiveserver2 作为服务器端,然后用客户端通过 thrift 去连接 hiveserver2 来插数据的。

    由于一次 mapreduce 耗时很长,所以我尽可能一次插很多的数据进去,也就是用的 INSERT INTO table VALUES...这个语法。现在问题来了就是如果插得数大于 10M 的话就会出错,客户端提示的错误就是:

    Hive ERROR_STATE Error Message: Error while processing statement: FAILED: Execution Error, return code 2 from org.apache.hadoop.hive.ql.exec.mr.MapRedTask

    去找出 yarn 的 log 就是这样:

    2017-07-18 11:35:54,832 WARN org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor: Exit code from container container_1499276494511_0407_01_000005 is : 255 2017-07-18 11:35:54,832 WARN org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor: Exception from container-launch with container ID: container_1499276494511_0407_01_000005 and exit code: 255 ExitCodeException exitCode=255: at org.apache.hadoop.util.Shell.runCommand(Shell.java:538) at org.apache.hadoop.util.Shell.run(Shell.java:455) at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:715) at org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java:212) at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:302) at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:82) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745)

    可以看到 2 个提示都不是有价值的信息,目前已经排除了 jvm 的 stack 或者 heap 不足了,因为之前遇到过 heap 不足抛出 OutOfMemory 异常,增加-Xmx 后问题就解决了。

    我搜遍了互联网都找不到答案,求 hvie 大神帮忙看看

    6 条回复    2017-07-19 10:58:09 +08:00
    cye3s
        1
    cye3s  
       2017-07-18 18:15:24 +08:00 via Android
    直接 load data 到一张表,再插入另一张表报错么?
    tttwww18
        2
    tttwww18  
       2017-07-18 18:21:11 +08:00
    信息量有点少。看 hive log 里面能找到啥线索不?
    rale
        3
    rale  
       2017-07-18 18:49:34 +08:00
    Comdex
        4
    Comdex  
       2017-07-18 20:26:27 +08:00
    把 map 和 reduce 的内存设大点试试
    tomatoz
        5
    tomatoz  
       2017-07-19 00:14:57 +08:00
    你这是 nodemanager 的日志,应该去 application 日志里去找
    yarn logs -applicationId XXX
    另外'10M'这个数也有点微妙,因为 hadoop 默认的 job.split.metainfo 最大值恰好是 10M(全称是 mapreduce.job.split.metainfo.maxsize)
    但是 metainfo 的长度应该和插入数据量没关系呀。可能我想多了。。
    gouchaoer
        6
    gouchaoer  
    OP
       2017-07-19 10:58:09 +08:00
    @tomatoz 现在改变方案了,似乎通用的做法是把数据按格式导入一个 txt 文件,然后在使用 hive 的 load data 命令来导入比较好。。。insert into 每一次都是一次 mapred,消耗太大了
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     5393 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 25ms UTC 08:50 PVG 16:50 LAX 01:50 JFK 04:50
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86