TensorFlow MNIST 求助 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
zbl430
V2EX    TensorFlow

TensorFlow MNIST 求助

  •  
  •   zbl430 2017-07-05 16:45:56 +08:00 2256 次点击
    这是一个创建于 3019 天前的主题,其中的信息可能已经有所发展或是发生改变。
    #! /usr/bin/env python # -*- coding: utf-8 -*- import time import input_data import tensorflow as tf def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # 计算开始时间 start = time.clock() # MNIST 数据输入 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) x = tf.placeholder(tf.float32, [None, 784]) # 图像输入向量 W = tf.Variable(tf.zeros([784, 10])) # 权重,初始化值为全零 b = tf.Variable(tf.zeros([10])) # 偏置,初始化值为全零 # 第一层卷积,由一个卷积接一个 maxpooling 完成,卷积在每个 # 5x5 的 patch 中算出 32 个特征。 # 卷积的权重张量形状是[5, 5, 1, 32],前两个维度是 patch 的大小, # 接着是输入的通道数目,最后是输出的通道数目。 # 而对于每一个输出通道都有一个对应的偏置量。 W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) x_image = tf.reshape(x, [-1, 28, 28, 1]) # 最后一维代表通道数目,如果是 rgb 则为 3 # x_image 权重向量卷积,加上偏置项,之后应用 ReLU 函数,之后进行 max_polling h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) # 实现第二层卷积 # 每个 5x5 的 patch 会得到 64 个特征 W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) # 密集连接层 W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # Dropout, 用来防止过拟合 #加在输出层之前,训练过程中开启 dropout,测试过程中关闭 keep_prob = tf.placeholder("float") h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # 输出层, 添加 softmax 层 W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_cOnv= tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) # 训练和评估模型 y_ = tf.placeholder("float", [None, 10]) cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv)) # 计算交叉熵 # 使用 adam 优化器来以 0.0001 的学习率来进行微调 train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) # 判断预测标签和实际标签是否匹配 correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) # 启动创建的模型,并初始化变量 saver = tf.train.Saver() # 声明 tf.train.Saver 类用于保存模型 write_version=tf.train.SaverDef.V1 sess = tf.Session() sess.run(tf.initialize_all_variables()) # 开始训练模型,循环训练 20000 次 for i in range(20000): batch = mnist.train.next_batch(100) # batch 大小设置为 50 if i % 1000 == 0: train_accuracy = accuracy.eval(session=sess, feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0}) print("step %d, train_accuracy %g" % (i, train_accuracy)) # 神经元输出保持不变的概率 keep_prob 为 0.5 train_step.run(session=sess, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) # 神经元输出保持不变的概率 keep_prob 为 1,即不变,永远保持输出 print("test accuracy %g" % accuracy.eval(session=sess, feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) # 计算程序结束时间 end = time.clock() saver_path = saver.save(sess, "save/model.ckpt") # 将模型保存到 save/model.ckpt 文件 print("Model saved in file:", saver_path) print("running time is %g s" % (end - start)) 

    上面的代码将训练的结果进行保存

    下面的代码使用训练结果进行识别

    #! /usr/bin/env python # -*- coding: utf-8 -*- """""" from PIL import Image from numpy import * import tensorflow as tf import sys if len(sys.argv) < 2: print('argv must at least 2. you give '+str(len(sys.argv))) sys.exit() filename = sys.argv[1] im = Image.open(filename) img = array(im.resize((28, 28), Image.ANTIALIAS).convert("L")) data = img.reshape([1, 784]) x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) y = tf.nn.softmax(tf.matmul(x, W) + b) saver = tf.train.Saver() init_op = tf.initialize_all_variables() with tf.Session() as sess: sess.run(init_op) save_path = "./save/model.ckpt" saver.restore(sess, save_path) predictiOns= sess.run(y, feed_dict={x: data}) print(predictions[0]) 

    使用的图片是张黑白的 数字 4

    结果是:[ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]

    这结果不对啊,起码也应该是:[ 0.1 0.1 0.1 0.1 1.0 0.1 0.1 0.1 0.1 0.1]

    求大神帮忙!!!!!

    2 条回复    2017-07-06 09:43:03 +08:00
    ivechan
        1
    ivechan  
       2017-07-05 21:47:46 +08:00   1
    你 train 的 model 结构和做 predict 的 model 结构完全不一样, 怎么可能得到正确结果。
    你 train 的时候 model 是各种 cnn + pool +fc,predict 的 model 却是 只有一个简单的 fc layer。
    或许你可以看看他怎么写
    https://github.com/niektemme/tensorflow-mnist-predict
    zbl430
        2
    zbl430  
    OP
       2017-07-06 09:43:03 +08:00
    @ivechan 真的非常感谢,我找了好久找的就是这个!!
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     3355 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 25ms UTC 10:40 PVG 18:40 LAX 03:40 JFK 06:40
    Do have faith in what you're doing.
    ubao snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86