谈谈量化投资:几个量化相关的问题 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
raquant
V2EX    投资

谈谈量化投资:几个量化相关的问题

  •  
  •   raquant 2017-03-21 17:27:05 +08:00 2730 次点击
    这是一个创建于 3134 天前的主题,其中的信息可能已经有所发展或是发生改变。

    谈谈量化投资:几个量化相关的问题

    我们先从几个在量化投资中经常遇到的小问题出发,然后逐渐深入思考量化投资的几个基本方法和原则。这些问题或许没有统一的标准答案,我也不会给出具体的答案,这里提出的主要目的是引起大家思考。

    第一个问题:如何定义与看待期望收益与风险?

    这可以说是投资领域的终极问题。这个问题很大程度上决定了你如何做策略的研发,如果管理风险,以及如何进行资产配置等关键问题。首先,到目前大家已经比较能够一致认同的就是,收益这个变量本身是随机的,不确定的,而且极难预测,因此单纯谈论收益,从长期的系统化投角度讲,意义不大,一次两次赚多少钱跟你的系统化投资没有太大关系,而研究的重点,要放在期望收益上,也就是从概率意义上以及大样本意义上的期望水平。

    与收益相对应的是风险,如何定义风险也是有着不同的版本。一种简单的定义可以是波动率,或下行波动率,但是这并不能包含市场中的大部分主要风险,比如说流动性风险,再比如说即使只考虑波动率或亏损,在 bad times 的时候,某个资产或某个策略的大幅亏损对投资者的整个系统化投资的危害程度一般也会更高,而在 good times 的时候,同样的亏损或波动率或许对整个系统的危害程度没有那么高,这一点通过市场溢价的水平就可以看出来:比如说市场总是倾向于给予 out of money 的期权更高的溢价(波动率微笑特征),或者在大部分时间内给予小市值高成长股票更高的风险溢价(然而在股市出现系统性崩盘时,这类股票的跌幅往往也是最大的),这些都是市场在表达对风险的不同对待的现象。

    第二个问题:期望收益来自哪里?

    这是做策略投研的一个核心问题,你首先要有一个基本的逻辑作为引导,来开发你的策略,然后再运用数据和模型进行去伪存真,抽丝剥茧的分析,但是在这个过程中,逻辑是必不可少的一个主线,那么这个逻辑就是你思考的期望收益的来源。

    有的人从不同资产类别的角度理解期望收益来源,去比较股票,债券,商品等不同资产类别的收益贡献,那么这就是朝着大类资产配置和组合的角度去理解投资,这里面做得好,也是可以做出比全市场平均配置更好的投资方案的。

    还有一些人,通过策略风格角度理解收益的来源,比如趋势类策略贡献多少收益,波动率类策略贡献多少收益,那么这便是从策略风格或种类的角度去分析,也可以成为一套体系。但是这些都是分析的角度,最终仍然没有根本性回答你的超额收益来自哪里的问题。比如说趋势策略,为什么就会有超额收益呢?或者说股票,为什么相对于债券有超额收益呢?

    从这个层次上,我认为超额收益的主要来源,其实归根结底分为两类:

    一类是利用市场一定时间内的无效性或者别人犯得错误,这是很多价值投资或套利投资的基本逻辑来源。

    另一类就是这种投资行为的超额收益是承担了某种风险的风险溢价,比如说 volatility selling 或者 sell options, 就可以归为这种。

    卖出波动率或卖出期权,其实相当于卖保险,是在承担一些小概率的高风险,这些小概率事件可能很久都不会发生,于是投资人通过卖期权可能在很长一段时间内获得稳定的收益,但是一旦小概率事件发生,那么到时候产生的亏损,也往往是致命的。

    再比如说针对一些流动性极差的资产的做市策略,往往也可以获利丰厚,但是这是因为在这种资产中做市交易承担了更多的流动性风险,这种风险处理稍有不慎就可能导致严重亏损,所以在这种资产中做市的收益才会显得比较高,但是前提是你了解清楚这个风险溢价的来源,并有技巧可以合理的化解他,或者比别人能够在这方面做的更好,否则的话,从长期看,你的期望收益未必是很高的。

    基本上市场上大部分的非高频系统化投资策略的稳定超额收益的来源,往往都与上述两个方面有关,现在市场变得越来越有效,所以其实第一种收益来源的机会逐渐变得越来越少,越来越难以抓住,而第二种收益的来源,是可以长期存在的,但是第二种收益的来源,往往是风险溢价,他并不是免费午餐,这一点是要牢记的。所以不要以为你的投资系统连续 7 年或 10 年都可以稳定盈利,你就可以高枕无忧,其实或许只是你承担的风险事件,还没有到来而已,如果对于这些风险,你无法做到比别人更好的管理,那么这个游戏长久的进行下去,迟早有一天属于你的黑天鹅会到来,而且到来的频率越低,越往往会是一次性致命的。

    第三个问题:一个策略被很多人知道了以后,是否就不赚钱了?

    接着上面的那个问题的思路继续讲,如果你的这个策略的收益来源主要是通过市场的无效性获益,那么确实当更多人知道了这一点并参与进来,你的获利空间也就越来越小。但是如果你的策略的收益来源是第二种,那么其实即使很多人知道了,也未必会导致它不赚钱,当然,正如上面我们提到的,这样的收益,其所承担的风险,你也是需要有很清醒的认识的,并可以合理的管理这个风险,所以从这个角度叫,盈亏同源是有道理的,好多人说的盈亏同源,其实往往就是指第二种的这个收益。

    第四个问题:如何评价一个投资系统或策略的好与坏?或者如何评价一个基金的好与坏?

    这个问题也是仁者见仁智者见智了,但是据我所了解,很悲观的是,最后很难有一种方法能够非常准确与客观并长期有效。比如说历史业绩,这当然是一个重要的指标,但是历史业绩的好与坏一定与未来正相关吗?有时是的,但有时可以是反过来的。

    比如一个策略或基金,在商品期货市场今年下半年的趋势行情中,不到一两个月就赚了超过 30%的收益的话,这当然是不错的业绩,但是根据此,就购买这只基金并期望明年获得类似的收益,是合理的吗?仔细想想,其实不合理。因为一个策略或者基金能够在短时间内获取如此高的收益,恰恰说明他的策略风格是明确的,单一的,投资的观点是相对激进的,比如说他全部都是趋势类的策略思路,而且还用了比较高的杠杆,那么继续坚持这样的投资策略或思路的话,假如明年市场陷入无序的震荡,他可能就会亏大钱了。

    当然你可以争论说明年或许还是趋势行情,但我觉得这方面除非你有非常合理的具体的模型来预测,并且确实证明长期有效,否则我是不觉得你可以准确预测明年的市场结构的(历史上多次证明华尔街大部分专业机构和交易者对于未来一年的市场的预测往往都是大概率错误的)。

    你也可以说,这个策略很智能,或者这个基金经理很智能,他们总是能在趋势来的时候做趋势交易,震荡市场来了就知道做震荡,市场中是否存在这样的高手长年可以准确判断并切换的?我觉得天才可能是有的,但是你遇到的概率是比较低的,一个理性的投资者,不应该基于一个假设就是自己是全市场最聪明或者全市场最幸运的一个,来进行投资。这样的心态下,大概率投资生涯会比较短。

    人在面对市场的时候,谦虚一点,保守一点总是更好的,即使你很看好趋势行情,也要为非趋势行情的市场做足准备,不要总是假设自己很聪明,可以做很多预测,然后在不同子策略或子基金之间来回选择切换做择时,事实往往是残酷的,那就是你这么做之后发现其实自己是比较蠢的那一个,择时起到反作用,你觉得这个基金该赚钱了,或者这个策略该赚钱了,然后想去抄底的,结果反而不如人家一直呆在里面的或者一直在外面的。

    所以从这个角度讲,即使很多的专业机构,做的也不够好。最近 FOF 在国内非常火爆,可是我要做一个悲观的预言就是目前市场上已经做 FOF 或者成立的 FOF ,其中绝大多数的寿命可能都不会超过 3 年,这个跟在股市里散户十人九亏是一个道理,心态没摆正,机构并不会比散户做的更好。好多 FOF 基本就是看着历史业绩选子基金,业绩好的买进入,差了的就赎回,其他的思考能力很差,对市场的理解很差,对策略的把握也不行,那么几年下来大家就会发现他这个 FOF 还不如平均的买入那几个子基金然后抱着不动的结果好,那么可想而知他的结果了。所以说,投资策略评价是一门很高深的学问,不是说你看几个指标,算一算夏普率,比一比最大回撤,然后答案就确定了。我的观点是,做策略评价的人,做 FOF 的人,选子基金的人,他做交易或者投资研发的能力,得比那些做策略的人,做子基金的人,水平更高,这样才能选的好。你一个子策略能做好,一个子基金能做好,才能够考虑怎么做好多个子基金的搭配,多个子策略的组合,一个都搞不好就想搞多个,没当好徒弟就想做师傅,往往事与愿违,可惜现在的市场实际情况看,是反过来的,这导致我对整个 FOF 行业的每个 FOF 基金的寿命长短,不表示乐观。

    对量化感兴趣?快来raquant 镭矿论坛试试吧。

    目前尚无回复
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     3594 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 29ms UTC 05:06 PVG 13:06 LAX 22:06 JFK 01:06
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86