Tensorflow 笔记 加速 SVM 分类器 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
LittleUqeer
V2EX    TensorFlow

Tensorflow 笔记 加速 SVM 分类器

  •  
  •   LittleUqeer 2017-02-13 14:43:58 +08:00 4678 次点击
    这是一个创建于 3161 天前的主题,其中的信息可能已经有所发展或是发生改变。

    大家好,

    今天想和大家讲讲sklearn,我在处理 30W 行数据做分类的时候发现 sklearn 对多核工作站支持效果不是太好,我使用一个 20 核 E5 工作站居然还没有我笔记本速度快,看了一下发现 sklearn 没有充分使用 64G 内存和 CPU 的多核。 这里编写了一个 sklearn 的 SVM 类,可以通过占据更多的计算资源对 SVM 加速进行。

    用法

    训练 fit(trainX, trainY)
    预测 pred(testX)
    学习步长 learning_rate = 0.001
    训练周期 training_epoch = None,
    终止误差 error = 0.001,
    if training_epoch is not None then the error will not effect
    显示步长 display_step = 5

    高斯核定义: gamma
    K(x)=exp(γxxT)
    Gaussian RBF

    import tensorflow as tf import functools def lazy_property(function): attribute = '_' + function.__name__ @property @functools.wraps(function) def wrapper(self): if not hasattr(self, attribute): setattr(self, attribute, function(self)) return getattr(self, attribute) return wrapper class NonlinearSVC(object): def __init__(self, learning_rate = 0.001, training_epoch = None, error = 0.001, display_step = 5): self.learning_rate = learning_rate self.training_epoch = training_epoch self.display_step = display_step self.error = error def __Preprocessing(self, trainX): row = trainX.shape[0] col = trainX.shape[1] self.X = tf.placeholder(shape=[row, col], dtype= tf.float32) self.Y = tf.placeholder(shape=[row, 1], dtype= tf.float32) self.test = tf.placeholder(shape=[None, col], dtype= tf.float32) self.beta = tf.Variable(tf.truncated_normal(shape=[1, row], stddev=.1)) @lazy_property def Kernel_Train(self): tmp_abs = tf.reshape(tensor=tf.reduce_sum(tf.square(self.X), axis=1), shape=[-1,1]) tmp_ = tf.add(tf.sub(tmp_abs, tf.mul(2., tf.matmul(self.X, tf.transpose(self.X)))), tf.transpose(tmp_abs)) return tf.exp(tf.mul(self.gamma, tf.abs(tmp_))) @lazy_property def Kernel_Prediction(self): tmpA = tf.reshape(tf.reduce_sum(tf.square(self.X), 1),[-1,1]) tmpB = tf.reshape(tf.reduce_sum(tf.square(self.test), 1),[-1,1]) tmp = tf.add(tf.sub(tmpA, tf.mul(2.,tf.matmul(self.X, self.test, transpose_b=True))), tf.transpose(tmpB)) return tf.exp(tf.mul(self.gamma, tf.abs(tmp))) @lazy_property def Cost(self): left = tf.reduce_sum(self.beta) beta_square = tf.matmul(self.beta, self.beta, transpose_a=True) Y_square = tf.matmul(self.Y, self.Y, transpose_b= True) right = tf.reduce_sum(tf.mul(self.Kernel_Train, tf.mul(beta_square, Y_square))) return tf.neg(tf.sub(left, right)) @lazy_property def Prediction(self): kernel_out = tf.matmul(tf.mul(tf.transpose(self.Y),self.beta), self.Kernel_Prediction) return tf.sign(kernel_out - tf.reduce_mean(kernel_out)) @lazy_property def Accuracy(self): return tf.reduce_mean(tf.cast(tf.equal(tf.squeeze(self.Prediction), tf.squeeze(self.Y)), tf.float32)) def fit(self, trainX, trainY, gamma= 50.): self.sess = tf.InteractiveSession() self.__Preprocessing(trainX) self.gamma = tf.constant(value= -gamma, dtype=tf.float32) #self.optimizer = tf.train.ProximalGradientDescentOptimizer(self.learning_rate).minimize(self.Cost) self.optimizer = tf.train.AdamOptimizer(self.learning_rate).minimize(self.Cost) self.sess.run(tf.global_variables_initializer()) if self.training_epoch is not None: for ep in range(self.training_epoch): self.sess.run(self.optimizer, feed_dict={self.X:trainX, self.Y:trainY}) if ep % self.display_step== 0: loss, acc = self.sess.run([self.Cost, self.Accuracy], feed_dict={self.X:trainX, self.Y:trainY, self.test:trainX}) print ('epoch=',ep,'loss= ',loss, 'accuracy= ', acc) elif self.training_epoch is None: acc = 0.1 ep = 0 while (acc< 1.- self.error): acc,_ = self.sess.run([self.Accuracy, self.optimizer], feed_dict={self.X:trainX, self.Y:trainY, self.test:trainX}) ep += 1 if ep % self.display_step== 0: loss = self.sess.run(self.Cost, feed_dict={self.X:trainX, self.Y:trainY}) print ('epoch=',ep,'loss= ',loss, 'accuracy= ', acc) def pred(self, test): output = self.sess.run(self.Prediction, feed_dict={self.X:trainX, self.Y:trainY, self.test:trainX}) return output 

    Linear SVM

    import tensorflow as tf import functools def lazy_property(function): attribute = '_' + function.__name__ @property @functools.wraps(function) def wrapper(self): if not hasattr(self, attribute): setattr(self, attribute, function(self)) return getattr(self, attribute) return wrapper class LinearSVC(object): def __init__(self, learning_rate = 0.001, training_epoch = None, error = 0.001, display_step = 5): self.learning_rate = learning_rate self.training_epoch = training_epoch self.display_step = display_step self.error = error def __Preprocessing(self, trainX): row = trainX.shape[0] col = trainX.shape[1] self.X = tf.placeholder(shape=[row, col], dtype= tf.float32) self.Y = tf.placeholder(shape=[row, 1], dtype= tf.float32) self.test = tf.placeholder(shape=[None, col], dtype= tf.float32) self.beta = tf.Variable(tf.truncated_normal(shape=[1, row], stddev=.1)) @lazy_property def Kernel_Train(self): return tf.matmul(self.X, self.X, transpose_b=True) @lazy_property def Kernel_Prediction(self): return tf.matmul(self.X, self.test, transpose_b=True) @lazy_property def Cost(self): left = tf.reduce_sum(self.beta) beta_square = tf.matmul(self.beta, self.beta, transpose_a=True) Y_square = tf.matmul(self.Y, self.Y, transpose_b= True) right = tf.reduce_sum(tf.mul(self.Kernel_Train, tf.mul(beta_square, Y_square))) return tf.neg(tf.sub(left, right)) @lazy_property def Prediction(self): kernel_out = tf.matmul(tf.mul(tf.transpose(self.Y),self.beta), self.Kernel_Prediction) return tf.sign(kernel_out - tf.reduce_mean(kernel_out)) @lazy_property def Accuracy(self): return tf.reduce_mean(tf.cast(tf.equal(tf.squeeze(self.Prediction), tf.squeeze(self.Y)), tf.float32)) def fit(self, trainX, trainY, gamma= 50.): self.sess = tf.InteractiveSession() self.__Preprocessing(trainX) self.gamma = tf.constant(value= -gamma, dtype=tf.float32) #self.optimizer = tf.train.ProximalGradientDescentOptimizer(self.learning_rate).minimize(self.Cost) self.optimizer = tf.train.AdamOptimizer(self.learning_rate).minimize(self.Cost) self.sess.run(tf.global_variables_initializer()) if self.training_epoch is not None: for ep in range(self.training_epoch): self.sess.run(self.optimizer, feed_dict={self.X:trainX, self.Y:trainY}) if ep % self.display_step== 0: loss, acc = self.sess.run([self.Cost, self.Accuracy], feed_dict={self.X:trainX, self.Y:trainY, self.test:trainX}) print ('epoch=',ep,'loss= ',loss, 'accuracy= ', acc) elif self.training_epoch is None: acc = 0.1 ep = 0 while (acc< 1.- self.error): acc,_ = self.sess.run([self.Accurac, self.optimizer], feed_dict={self.X:trainX, self.Y:trainY, self.test:trainX}) ep += 1 if ep % self.display_step== 0: loss = self.sess.run(self.Cost, feed_dict={self.X:trainX, self.Y:trainY}) print ('epoch=',ep,'loss= ',loss, 'accuracy= ', acc) def pred(self, test): output = self.sess.run(self.Prediction, feed_dict={self.X:trainX, self.Y:trainY, self.test:trainX}) return output 

    想看更多源代码的小伙伴们可以戳这个链接: https://uqer.io/community/share/58a147dfc1e3cc00567fde4d

    目前尚无回复
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     2970 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 26ms UTC 13:34 PVG 21:34 LAX 06:34 JFK 09:34
    Do have faith in what you're doing.
    ubao snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86