借助 Python 实现海龟交易系统:) - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
推荐学习书目
Learn Python the Hard Way
Python Sites
PyPI - Python Package Index
http://diveintopython.org/toc/index.html
Pocoo
值得关注的项目
PyPy
Celery
Jinja2
Read the Docs
gevent
pyenv
virtualenv
Stackless Python
Beautiful Soup
结巴中文分词
Green Unicorn
Sentry
Shovel
Pyflakes
pytest
Python 编程
pep8 Checker
Styles
PEP 8
Google Python Style Guide
Code Style from The Hitchhiker's Guide
datayes2015
V2EX    Python

借助 Python 实现海龟交易系统:)

  •  
  •   datayes2015 2016-09-06 18:07:41 +08:00 12511 次点击
    这是一个创建于 3326 天前的主题,其中的信息可能已经有所发展或是发生改变。
    前言

    海龟交易系统本质上是一个趋势跟随的系统,但是最值得我们学习的,是资金管理尤其是分批建仓及动态止损的部分

    一、趋势捕捉

    唐奇安通道

    该指标是有 Richard Donchian 发明的,是有 3 条不同颜色的曲线组成的,该指标用周期(一般都是 20 )内的最高价和最低价来显示市场价格的波动性,当其通道窄时表示市场波动较小,反之通道宽则表示市场波动比较大。 如图所示:
    该具体分析为:
    当价格冲冲破上轨是就是可能的买的信号;反之,冲破下轨时就是可能的卖的信号。
    该指标的计算方法为:

    上线=Max (最高低, n )
    下线=Min (最低价, n )
    中线=(上线+下线)/2


    海龟交易就是利用唐奇安通道的价格突破来捕捉趋势。
    不过我们在向下突破 10 日唐奇安下沿卖出。
    二、资金管理

    2.1 、 N 值计算

    N 值是仓位管理的核心,涉及加仓及止损。另外, N 值与技术指标平均真实波幅 ATR 很相似
    首先介绍真实波幅: 真实波幅是以下三个值中的最大值
    1 、当前交易日最高价和最低价的波幅
    2 、前一交易日的收盘价与当前交易日最高价的波幅
    3 、前一交易日的收盘价与当前交易日最低价的波幅
    用公式写就是:
    TrueRange=Max(HighLow,HighPreClose,PreCloseLow)
    接下来, N 值计算公式为:
    N=PreN[19 :]+TrueRange20
    其中 preN 为前面 N 值, TrueRange 为当前的真实波幅,此公式的真是含义为计算之前 20 天(包括今天在内)的 N 的平均值
    另外,有些海龟交易系统用的是 ATR 来代替 N 值, ATR 为真实波幅的 20 日平均。

    2.2 买卖单位及首次建仓

    先给出公式:
    Unit=1%AccountN
    首次建仓的时候,当捕捉到趋势,即价格突破唐奇安上轨时,买入 1 个 unit 。
    其意义就是,让一个 N 值的波动与你总资金 1%的波动对应,如果买入 1unit 单位的资产,当天震幅使得总资产的变化不超过 1%。例如:
    现在你有 10 万元资金, 1%波动就是 1000 元。假如标 X 的 N 值为 0.2 元, 1000 元÷0.2 元=5000 股。也就是说,你的第一笔仓位应该是在其突破上轨(假设为 5 元)时立刻买入 5000 股,耗资 25000 元。
    2.3 加仓

    若股价在上一次买入(或加仓)的基础上上涨了 0.5N ,则加仓一个 Unit 。
    接上面的例子:假如 N 值仍为 0.2 。
    价格来到 5 + 0.2*0.5 = 5.1 时,加仓 1 个 Unit ,买入 5000 股,耗资 25500 元,剩余资金 49500 元
    价格来到 5.1 + 0.2*0.5 = 5.2 时再加仓 1 个 unit 。买入 5000 股,耗资 26000 元,剩余资金 23500 元
    2.4 动态止损

    当价格比最后一次买入价格下跌 2N 时,则卖出全部头寸止损。
    接上面的例子,最后一次加仓价格为 5.2 。假如此时 N 值 0.2 元。 当价格下跌到 5.2 - 2*0.2 = 4.8 元时,清仓。
    持仓成本为 ( 5+5.1+5.2 )*5000/15000 = 5.1 元。 此时亏损 ( 5.1-4.8 )*15000 = 4500 元 对于 10 万来说 这波亏损 4.5%
    2.5 止盈

    当股价跌破 10 日唐奇安通道下沿,清空头寸结束本次交易
    三、代码实现

    本代码用 ATR 代替 N 值进行计算,其他逻辑不变:
    ATR=MA(TrueRange,20)
    我们以单只股票为标,建立海龟交易系统,当然,可以将总资产均分为 n 份,同时交易 n 个标。

    计算 ATR 值用日线数据,监控价格突破采用分钟线
    0 初始化参数,在 initialize(account)写入
    def initialize(account):
    account.last_buy_prcie = 0 #上一次买入价
    account.hold_flag = False # 是否持有头寸标志
    account.limit_unit = 4 # 限制最多买入的单元数
    account.unit = 0 # 现在买入 1 单元的股数
    1 唐奇安通道计算及判断入场离场:
    高清源代码请查看: https://uqer.io/community/share/57bd5864228e5b79a575a9b2
    构建策略

    分钟线回测时间略长啊~
    先把上面写的函数集中下,方便微核充启后运行函数



    我们发现,收益基本上处于阶梯状上升。但是几年下来收益也并不高,我们来看看记录下来的数据,分析下整个过程:
    高清源代码请查看: https://uqer.io/community/share/57bd5864228e5b79a575a9b2
    把图画出来:
    红色点为入场点;
    蓝色点为离场点;
    绿色点位止损点


    可以发现:
    ATR 波形有些异常,有些地方会直线上升。分析后发现:因为 quartz 中, account.get_daily_history()取得的最高最低价中,对停牌的情况处理为了 0 !

    我们调整下策略:
    在计算 ATR 时,剔除最高最低为 0 的部分,再做平均。
    数据走势图链接: https://uqer.io/community/share/57bd5864228e5b79a575a9b2
    累计收益相差不多,我们再来看看记录的数据。
    红色点为入场点;
    蓝色点为离场点;
    绿色点位止损点

    数据走势图链接: https://uqer.io/community/share/57bd5864228e5b79a575a9b2
    这次发现, ATR 波形比较正常,在波动剧烈的时候增大。

    观察入场、离场、止损点发现,海龟交易系统捕捉到了大的上涨趋势,在震荡市中不断试错止损。

    上涨过程中出现回调容易震出,减少了回撤的同时也减小了收益。

    再看看仓位情况


    可以发现,大部分持有情况下仓位在 0.5 左右,甚至低于半仓,少数高于半仓的情况最高不超过 0.8 。因此,收益不高也是正常了。

    总结

    本文主要介绍了海龟交易的细节,不过是面向一个投资目标的。当想投多只股票时,可以先设定几个坑位,平分资金,然后对每个坑位采用海龟交易策略。

    海龟交易系统通常会用两个趋势捕捉系统,不同之处在于价格突破的上下线计算。系统 1 :突破上线 20 日最高买,突破下线 10 日最低卖;系统 2 :突破上线 55 日最高买,突破下线 20 日最低卖。 这部分可以通过修改参数实现。

    原的海龟交易采用唐奇安通道来捕捉趋势,虽然能捕捉到大趋势,但是在震荡的情况下表现不如人意,不过这也是所有趋势型策略的通病。

    海龟交易策略的核心在于资金管理,可以看出策略的回撤比较小,并且还有优化的空间。资金管理不一定要与趋势型策略结合,是不是可以用到多因子策略上?动量反转?均值回归?这些就留给读者们自行尝试了~
    20 条回复    2016-10-20 18:18:36 +08:00
    findex
        1
    findex  
       2016-09-06 18:53:01 +08:00
    分析的不错。这么多,是自己写的吗?

    想了解下,金融 python 的收入如何,能达到一个什么水平,如果只是码代码的话
    aiguozhedaodan
        2
    aiguozhedaodan  
       2016-09-06 19:31:47 +08:00 via Android
    马克
    20150517
        3
    20150517  
       2016-09-07 06:07:31 +08:00
    大智慧公式就能编辑这个...
    xieyingli
        4
    xieyingli  
       2016-09-07 15:58:28 +08:00
    这是转帖么?
    dsg001
        5
    dsg001  
       2016-09-07 20:41:23 +08:00
    十年前用飞狐写指标
    yjzll
        6
    yjzll  
       2016-09-08 12:19:48 +08:00   1
    嘿嘿,不用看,按照这个系统肯定亏钱,原因很简单,按照技术 k 线执行买卖,是一种滞后行为,确定时间周期下,比如日 k 线下,除了大幅波动可以赚到一部分钱(去掉初期上涨段和下跌开始段),其他小幅波动段都是亏钱的,总体上亏的多,赚的少
    按照技术 k 线你只有找到一个方法,就是能从大周期上预期出向上或向下的概率,你才能赚钱
    当然,还有就是作弊,就是在期货盘口不断挂单撤单,制造假象
    yjzll
        7
    yjzll  
       2016-09-08 12:21:21 +08:00
    能从大周期上预期出向上或向下的概率,有人研发出来,可人家不会告诉你的
    run2
        8
    run2  
       2016-09-08 12:48:02 +08:00
    @yjzll 发出来估计也就不准了。。。多出来的买卖会冲垮那个模型
    MicroGalaxy
        9
    MicroGalaxy  
       2016-09-08 15:47:52 +08:00
    最近在研究,做成客户端。也是趋势交易
    MicroGalaxy
        10
    MicroGalaxy  
       2016-09-08 15:49:31 +08:00
    @sobigfish 这叫程序化交易,有些模型是可以做到大概率赚钱的,例如网格交易和 MACD 。
    lazyyz
        11
    lazyyz  
       2016-09-22 12:56:00 +08:00 via iPhone
    外汇交易 更适合程序化交易, MT4 的 EA 就是用 mql5 编写
    SourceMan
        12
    SourceMan  
       2016-09-22 13:01:15 +08:00
    记录这的交易过程.jpg
    lan894734188
        13
    lan894734188  
       2016-09-23 20:30:32 +08:00 via Android
    意思是自动买入抛出?
    datayes2015
        14
    datayes2015  
    OP
       2016-09-26 15:32:18 +08:00
    @lan894734188 可以这么说
    waruqi
        15
    waruqi  
       2016-09-29 11:23:57 +08:00
    用 mt4 写很方便,不过我写的。。从来没盈利过。。 = =
    alexapollo
        16
    alexapollo  
       2016-09-29 11:24:19 +08:00
    又见量化平台推广贴
    22too
        17
    22too  
       2016-09-29 12:59:44 +08:00
    量化永远是这样的。高频交易才是你们应该尝试的。
    leveraging
        18
    leveraging  
       2016-09-29 14:50:08 +08:00
    dataeye 广告贴。。惨无人道
    ivvei
        19
    ivvei  
       2016-10-19 11:23:23 +08:00
    不适合做 T+1 的股票。
    chcx
        20
    chcx  
       2016-10-20 18:18:36 +08:00
    A 股 T+1 你得等到明天
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     5847 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 28ms UTC 02:25 PVG 10:25 LAX 19:25 JFK 22:25
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86