关于组合数学和整数拆分的问题 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
pangtianyu
V2EX    数学

关于组合数学和整数拆分的问题

  •  
  •   pangtianyu 2016-05-23 02:19:59 +08:00 6362 次点击
    这是一个创建于 3440 天前的主题,其中的信息可能已经有所发展或是发生改变。

    Composition

    Strict Composition

    一个正整数 n 的 (strict) composition 是把 n 写成一个正整数数列的和的形式。
    举例,正整数 4 可以拆分成

    • 4
    • 3 + 1
    • 1 + 3
    • 2 + 2
    • 2 + 1 + 1
    • 1 + 2 + 1
    • 1 + 1 + 2
    • 1 + 1 + 1 + 1

    一共 8 种 composition 。注意顺序不同是有所谓的。

    如何数一个正整数 n 有多少种 composition 呢?首先,一个正整数 n 可以变成 n 个 1 相加的形式。所以,我们可以先写出一个带有 n 个 1 的数列:

    1 _ 1 _ 1 _ 1 _ 1 _ 1 _ 1 _ ... 1 _ 1 _ 1 _ 1

    中间的空格保留留空。在空格中我们可以填入逗号「,」或者加号「+」。填入不同的逗号或者加号,我们就会组成不同的 composition 。所以,问题变成了有多少种方式去填入逗号。如果逗号的位置确定了,加号的位置也就会跟着确定。在这里,假设我们要把 n 分成 k 个部分,那么我们就需要填入 k-1 个逗号。我们现在知道一共有 n-1 个空格可以填。所以,一共有 种方式去填入逗号(详见组合)。这也就相当于把 n 分成 k 个部分的时候,一共有 种 composition 的样子。最少我们能分成 1 个部分,就是 n 自己本身;而最多我们能分成 n 个部分,也就是 n 个 1 相加。所以,对于一个 n 来讲,它的 composition 的个数就等于

    Weak Composition

    如果把 0 也算做一个部分,那么我们叫它 weak composition 。我们不能定义一个正整数 n 一共有多少种 weak composition ,因为可以有无限多个 0 相加;但是我们能得知当把 n 分成 k 个部分的时候,一共有多少种 weak composition 。例如,当 n = 4 的时候,如果把 4 分成 2 个部分,那么一共有 5 种 weak composition ,如下:

    • 3 + 1
    • 2 + 2
    • 1 + 3
    • 0 + 4
    • 4 + 0

    如何得知当把一个正整数 n 拆分成 k 个部分的时候有多少种 weak composition ?首先,把 n 想象成 n 个 1 ,如果要把 n 个 1 组成的数列分成 k 个部分,那么我们需要有 k-1 个隔板。举例:当 n = 9, k = 4 的时候,其中一种情况是: 1 1 1 1 | 1 1 || 1 1 1 ,也就是 4 + 2 + 0 + 3 。所以问题可以变成:一共有 n + (k - 1) 个物体组成一个数列,把其中 n 个物体变成 1 ,其余 k - 1 个物体变成隔板,一共有多少种方法?这里如果 n 个 1 的位置确定了,余下的隔板位置也就确定了,反之也是如此。所以,有 方法。综上,可以得出结论,把一个正整数 n 拆分成 k 个部分, weak composition 的个数为

    问题来了

    问题 1 :如果要把 n 分成 k 个部分,但是每个部分不能大于 m ,请问一共有多少种 composition ? 举例,当 n = 4, k = 2, m = 2 的时候,整数 4 的 composition 只有一个: 2 + 2 。

    问题 2 :要把 n 分成 k 个部分,但是每个部分不能大于 m ,请问一共有多少种 weak composition ?

    7 条回复    2018-04-18 01:26:08 +08:00
    pangtianyu
        1
    pangtianyu  
    OP
       2016-05-23 09:07:05 +08:00
    难道 V2EX 上面没有对这种感兴趣的嘛 0.0
    di00di
        2
    di00di  
       2016-05-23 21:09:19 +08:00   2
    可以按照这个思路解:
    step1. 算出没有约束也就是每个部分可以是 1 到 n 的解
    step2. 计算 k 个部分大于等于 m + 1 的解。此步计算可以作变量替换相当于把 n-k*(m+1)分成 k 个部分的解
    step3. 根据容斥原理计算出最后的解。
    nsqiang
        3
    nsqiang  
       2018-01-29 09:32:44 +08:00
    @pangtianyu 问题解决了么~
    nsqiang
        4
    nsqiang  
       2018-01-29 10:04:14 +08:00
    nsqiang
        6
    nsqiang  
       2018-02-01 22:36:00 +08:00
    @nsqiang 收藏~
    pangtianyu
        7
    pangtianyu  
    OP
       2018-04-18 01:26:08 +08:00
    @nsqiang #6 哈哈才看到不好意思 已经解决了 这是我一次数学课 final exam 的问题 我做了不太确定想来问问
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     2632 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 25ms UTC 15:04 PVG 23:04 LAX 08:04 JFK 11:04
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86