在 Django 中,我们都知道当我们 all 之后是不会马上去查询数据的,当我们真正使用的时候,才会去触发查询操作。
下面我将带着大家从源码的角度一步一步解析。
from django.db import models # Create your models here. class Demo1(models.Model): name = models.CharField(max_length=100) age = models.IntegerField() def __str__(self): return self.name
看一下这几行代码发生了什么
使用是继承了 models.Model 。去看一下 models.Model 做了什么
# models.Model class Model(AltersData, metaclass=ModelBase): pass
可以看到把 ModelBase 当成了元类,那我们就去再看一下 ModelBase
class ModelBase(type): """Metaclass for all models.""" def __new__(cls, name, bases, attrs, **kwargs): super_new = super().__new__ # Also ensure initialization is only performed for subclasses of Model # (excluding Model class itself). parents = [b for b in bases if isinstance(b, ModelBase)] if not parents: return super_new(cls, name, bases, attrs) # Create the class. module = attrs.pop("__module__") new_attrs = {"__module__": module} classcell = attrs.pop("__classcell__", None) if classcell is not None: new_attrs["__classcell__"] = classcell attr_meta = attrs.pop("Meta", None) # Pass all attrs without a (Django-specific) contribute_to_class() # method to type.__new__() so that they're properly initialized # (i.e. __set_name__()). contributable_attrs = {} for obj_name, obj in attrs.items(): if _has_contribute_to_class(obj): contributable_attrs[obj_name] = obj else: new_attrs[obj_name] = obj new_class = super_new(cls, name, bases, new_attrs, **kwargs) abstract = getattr(attr_meta, "abstract", False) meta = attr_meta or getattr(new_class, "Meta", None) base_meta = getattr(new_class, "_meta", None) app_label = None # Look for an application configuration to attach the model to. app_cOnfig= apps.get_containing_app_config(module) if getattr(meta, "app_label", None) is None: if app_config is None: if not abstract: raise RuntimeError( "Model class %s.%s doesn't declare an explicit " "app_label and isn't in an application in " "INSTALLED_APPS." % (module, name) ) else: app_label = app_config.label new_class.add_to_class("_meta", Options(meta, app_label)) if not abstract: new_class.add_to_class( "DoesNotExist", subclass_exception( "DoesNotExist", tuple( x.DoesNotExist for x in parents if hasattr(x, "_meta") and not x._meta.abstract ) or (ObjectDoesNotExist,), module, attached_to=new_class, ), ) new_class.add_to_class( "MultipleObjectsReturned", subclass_exception( "MultipleObjectsReturned", tuple( x.MultipleObjectsReturned for x in parents if hasattr(x, "_meta") and not x._meta.abstract ) or (MultipleObjectsReturned,), module, attached_to=new_class, ), ) if base_meta and not base_meta.abstract: # Non-abstract child classes inherit some attributes from their # non-abstract parent (unless an ABC comes before it in the # method resolution order). if not hasattr(meta, "ordering"): new_class._meta.ordering = base_meta.ordering if not hasattr(meta, "get_latest_by"): new_class._meta.get_latest_by = base_meta.get_latest_by is_proxy = new_class._meta.proxy # If the model is a proxy, ensure that the base class # hasn't been swapped out. if is_proxy and base_meta and base_meta.swapped: raise TypeError( "%s cannot proxy the swapped model '%s'." % (name, base_meta.swapped) ) # Add remaining attributes (those with a contribute_to_class() method) # to the class. for obj_name, obj in contributable_attrs.items(): new_class.add_to_class(obj_name, obj) # All the fields of any type declared on this model new_fields = chain( new_class._meta.local_fields, new_class._meta.local_many_to_many, new_class._meta.private_fields, ) field_names = {f.name for f in new_fields} # Basic setup for proxy models. if is_proxy: base = None for parent in [kls for kls in parents if hasattr(kls, "_meta")]: if parent._meta.abstract: if parent._meta.fields: raise TypeError( "Abstract base class containing model fields not" "permitted for proxy model '%s'." % name ) else: continue if base is None: base = parent elif parent._meta.concrete_model is not base._meta.concrete_model: raise TypeError( "Proxy model '%s' has more than one non-abstract model base " "class." % name ) if base is None: raise TypeError( "Proxy model '%s' has no non-abstract model base class." % name ) new_class._meta.setup_proxy(base) new_class._meta.concrete_model = base._meta.concrete_model else: new_class._meta.concrete_model = new_class # Collect the parent links for multi-table inheritance. parent_links = {} for base in reversed([new_class] + parents): # Conceptually equivalent to `if base is Model`. if not hasattr(base, "_meta"): continue # Skip concrete parent classes. if base != new_class and not base._meta.abstract: continue # Locate OneToOneField instances. for field in base._meta.local_fields: if isinstance(field, OneToOneField) and field.remote_field.parent_link: related = resolve_relation(new_class, field.remote_field.model) parent_links[make_model_tuple(related)] = field # Track fields inherited from base models. inherited_attributes = set() # Do the appropriate setup for any model parents. for base in new_class.mro(): if base not in parents or not hasattr(base, "_meta"): # Things without _meta aren't functional models, so they're # uninteresting parents. inherited_attributes.update(base.__dict__) continue parent_fields = base._meta.local_fields + base._meta.local_many_to_many if not base._meta.abstract: # Check for clashes between locally declared fields and those # on the base classes. for field in parent_fields: if field.name in field_names: raise FieldError( "Local field %r in class %r clashes with field of " "the same name from base class %r." % ( field.name, name, base.__name__, ) ) else: inherited_attributes.add(field.name) # Concrete classes... base = base._meta.concrete_model base_key = make_model_tuple(base) if base_key in parent_links: field = parent_links[base_key] elif not is_proxy: attr_name = "%s_ptr" % base._meta.model_name field = OneToOneField( base, on_delete=CASCADE, name=attr_name, auto_created=True, parent_link=True, ) if attr_name in field_names: raise FieldError( "Auto-generated field '%s' in class %r for " "parent_link to base class %r clashes with " "declared field of the same name." % ( attr_name, name, base.__name__, ) ) # Only add the ptr field if it's not already present; # e.g. migrations will already have it specified if not hasattr(new_class, attr_name): new_class.add_to_class(attr_name, field) else: field = None new_class._meta.parents[base] = field else: base_parents = base._meta.parents.copy() # Add fields from abstract base class if it wasn't overridden. for field in parent_fields: if ( field.name not in field_names and field.name not in new_class.__dict__ and field.name not in inherited_attributes ): new_field = copy.deepcopy(field) new_class.add_to_class(field.name, new_field) # Replace parent links defined on this base by the new # field. It will be appropriately resolved if required. if field.one_to_one: for parent, parent_link in base_parents.items(): if field == parent_link: base_parents[parent] = new_field # Pass any non-abstract parent classes onto child. new_class._meta.parents.update(base_parents) # Inherit private fields (like GenericForeignKey) from the parent # class for field in base._meta.private_fields: if field.name in field_names: if not base._meta.abstract: raise FieldError( "Local field %r in class %r clashes with field of " "the same name from base class %r." % ( field.name, name, base.__name__, ) ) else: field = copy.deepcopy(field) if not base._meta.abstract: field.mti_inherited = True new_class.add_to_class(field.name, field) # Copy indexes so that index names are unique when models extend an # abstract model. new_class._meta.indexes = [ copy.deepcopy(idx) for idx in new_class._meta.indexes ] if abstract: # Abstract base models can't be instantiated and don't appear in # the list of models for an app. We do the final setup for them a # little differently from normal models. attr_meta.abstract = False new_class.Meta = attr_meta return new_class new_class._prepare() new_class._meta.apps.register_model(new_class._meta.app_label, new_class) return new_class def _prepare(cls): """Create some methods once self._meta has been populated.""" opts = cls._meta opts._prepare(cls) if opts.order_with_respect_to: cls.get_next_in_order = partialmethod( cls._get_next_or_previous_in_order, is_next=True ) cls.get_previous_in_order = partialmethod( cls._get_next_or_previous_in_order, is_next=False ) # Defer creating accessors on the foreign class until it has been # created and registered. If remote_field is None, we're ordering # with respect to a GenericForeignKey and don't know what the # foreign class is - we'll add those accessors later in # contribute_to_class(). if opts.order_with_respect_to.remote_field: wrt = opts.order_with_respect_to remote = wrt.remote_field.model lazy_related_operation(make_foreign_order_accessors, cls, remote) # Give the class a docstring -- its definition. if cls.__doc__ is None: cls.__doc__ = "%s(%s)" % ( cls.__name__, ", ".join(f.name for f in opts.fields), ) get_absolute_url_override = settings.ABSOLUTE_URL_OVERRIDES.get( opts.label_lower ) if get_absolute_url_override: setattr(cls, "get_absolute_url", get_absolute_url_override) if not opts.managers: if any(f.name == "objects" for f in opts.fields): raise ValueError( "Model %s must specify a custom Manager, because it has a " "field named 'objects'." % cls.__name__ ) manager = Manager() manager.auto_created = True cls.add_to_class("objects", manager) # Set the name of _meta.indexes. This can't be done in # Options.contribute_to_class() because fields haven't been added to # the model at that point. for index in cls._meta.indexes: if not index.name: index.set_name_with_model(cls) class_prepared.send(sender=cls)
class Manager(BaseManager.from_queryset(QuerySet)): def get_queryset(self): """ Return a new QuerySet object. Subclasses can override this method to customize the behavior of the Manager. """ return self._queryset_class(model=self.model, using=self._db, hints=self._hints) def all(self): # We can't proxy this method through the `QuerySet` like we do for the # rest of the `QuerySet` methods. This is because `QuerySet.all()` # works by creating a "copy" of the current queryset and in making said # copy, all the cached `prefetch_related` lookups are lost. See the # implementation of `RelatedManager.get_queryset()` for a better # understanding of how this comes into play. return self.get_queryset()
可以看到这里是继承了 BaseManager.from_queryset(QuerySet)。那继续看**BaseManager.from_queryset(QuerySet)**方法
class BaseManager: @classmethod def from_queryset(cls, queryset_class, class_name=None): if class_name is None: class_name = "%sFrom%s" % (cls.__name__, queryset_class.__name__) return type( class_name, (cls,), { "_queryset_class": queryset_class, **cls._get_queryset_methods(queryset_class), }, )
可以看到是使用 type 创建了类,然后继承了当前类,最后定义了一个**_queryset_class**方法。并把传入的 queryset_class(QuerySet)设置成了_queryset_class 属性的值。
class QuerySet(AltersData): """Represent a lazy database lookup for a set of objects.""" def __init__(self, model=None, query=None, using=None, hints=None): self.model = model self._db = using self._hints = hints or {} self._query = query or sql.Query(self.model) self._result_cache = None self._sticky_filter = False self._for_write = False self._prefetch_related_lookups = () self._prefetch_dOne= False self._known_related_objects = {} # {rel_field: {pk: rel_obj}} self._iterable_class = ModelIterable self._fields = None self._defer_next_filter = False self._deferred_filter = None def __iter__(self): """ The queryset iterator protocol uses three nested iterators in the default case: 1. sql.compiler.execute_sql() - Returns 100 rows at time (constants.GET_ITERATOR_CHUNK_SIZE) using cursor.fetchmany(). This part is responsible for doing some column masking, and returning the rows in chunks. 2. sql.compiler.results_iter() - Returns one row at time. At this point the rows are still just tuples. In some cases the return values are converted to Python values at this location. 3. self.iterator() - Responsible for turning the rows into model objects. """ self._fetch_all() return iter(self._result_cache) def _fetch_all(self): if self._result_cache is None: self._result_cache = list(self._iterable_class(self)) if self._prefetch_related_lookups and not self._prefetch_done: self._prefetch_related_objects()
Demo1.objects.all() [test_model for test_model in demos]
看一下这几行代码发生了什么。
DemoModes.objects 返回的就是上面的Manager。然后调用了 Manager 的all。然后在 all 里面返回了了_queryset_class。由上面我们可以知道 queryset_class 是传入的 QuerySet 。
查询生命周期
flowchart TD model[Demo] --> objects[objects] -- Manager --> all --> get_queryset[返回了 QuerySet]
这里现在返回了 QuerySet ,但是实际上没有和数据库交互呢。真正和数据库交互是在**[test_model for test_model in demos]**这里。
当开始遍历 demos 的时候会触发__iter__方法,然后在这个魔法函数里面会触发**__fetch_all [和数据交互] **方法,并返回一个一个迭代对象
查询生命周期
flowchart TD for[循环] --> iter[_\_iter\_\_] --> _fetch_all --数据库交互--> 返回结果
1 harlen 52 天前 字不如表,表不如图。 |
![]() | 2 lanweizhujiao   52 天前 你让我看什么 源码?? 我也能自己去看 你这个当个笔记吧 |