关于运行 Lightrag 官方示例报错的问题 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
mdb
V2EX    Local LLM

关于运行 Lightrag 官方示例报错的问题

  •  
  •   mdb 309 天前 1761 次点击
    这是一个创建于 309 天前的主题,其中的信息可能已经有所发展或是发生改变。
    Lightrag 是个 rag 框架,想用它来进行 AI 的知识库问答,从 github 上下载代码完后,历经千辛终于能把环境装好,但是运行的时候感觉快到成功的时候报错了,有了解的大佬能看出是什么原因吗
    本地 ollama 的模型是 qwen2.5:7b 和向量模型 nomic-embed-text ,做插入操作时报了如下错误
    关键错误:IndexError: index 0 is out of bounds for axis 0 with size 0

    -------------原始信息---------------
    INFO:htpx:HTTP Request: POST http://localhost:11434/api/embeddings "HTTP/1.1 200 OK"
    Generating embeddings: 100%|| 2/2 [00:22<00:00, 11.12s/batch]
    INFO:lightrag:Writing graph with 0 nodes, 0 edges
    Traceback (most recent call last):
    File "D:\download\ff\LightRAG-main\examples\lightrag_ollama_demo.py", line 31, in <module>
    rag.insert(f.read())
    File "D:\download\ff\LightRAG-main\lightrag\lightrag.py", line 238, in insert
    return loop.run_until_complete(self.ainsert(string_or_strings))
    File "E:\Python310\lib\asyncio\base_events.py", line 649, in run_until_complete
    return future.result()
    File "D:\download\ff\LightRAG-main\lightrag\lightrag.py", line 286, in ainsert
    await self.chunks_vdb.upsert(inserting_chunks)
    File "D:\download\ff\LightRAG-main\lightrag\storage.py", line 112, in upsert
    results = self._client.upsert(datas=list_data)
    File "D:\download\ff\LightRAG-main\venv\lib\site-packages\nano_vectordb\dbs.py", line 100, in upsert
    self.__storage["matrix"][i] = update_d[f_VECTOR].astype(Float)
    IndexError: index 0 is out of bounds for axis 0 with size 0

    Process finished with exit code 1

    -------------------------代码中配置如下-----------------
    rag = LightRAG(
    working_dir=WORKING_DIR,
    llm_model_func=ollama_model_complete,
    llm_model_name="qwen2.5:7b",
    llm_model_max_async=4,
    llm_model_max_token_size=32768,
    llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 32768}},
    embedding_func=EmbeddingFunc(
    embedding_dim=768,
    max_token_size=8192,
    func=lambda texts: ollama_embedding(
    texts, embed_model="nomic-embed-text", host="http://localhost:11434"
    ),
    ),
    )

    with open("./book.txt", "r", encoding="utf-8") as f:
    rag.insert(f.read()) --------------------这行报错


    这是什么原因,是哪里配得不对吗,还是代码有问题
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     2953 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 145ms UTC 13:38 PVG 21:38 LAX 06:38 JFK 09:38
    Do have faith in what you're doing.
    ubao snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86