一道立体几何题目 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
enjoying
V2EX    数学

一道立体几何题目

  •  
  •   enjoying 2024-10-07 11:55:32 +08:00 3249 次点击
    这是一个创建于 434 天前的主题,其中的信息可能已经有所发展或是发生改变。
    自己工作时突然想到的,和工作实质容无关。衍生出来的一个立体几何问题,自己十一节假日断断续续想了些时间了,还没解答出来。让有兴趣的网友帮忙一起来想想。

    第 1 条附言    2024-10-08 13:39:12 +08:00
    第 1 问题证明就是用:"如果两个相交平面都垂直于第三个平面,那么他们的交线垂直于第三个平面。"
    本题中的三个平面为平面 X ,平面 CGOL ,平面 ABCD 。

    第 3 个问题改一下:求∠LC
    第 2 条附言    2024-10-08 13:39:27 +08:00
    第 3 个问题改一下:求∠LCP
    第 3 条附言    2024-10-12 08:01:43 +08:00
    第二题答案为:
    ∠PCA≈13.194
    ∠GPC≈35.594

    但怎么算出来的忘了,只有十年前算出来的最终答案了。
    第 4 条附言    2024-10-12 08:05:18 +08:00
    又笔误:∠LCP≈35.594
    5 条回复    2024-10-08 13:38:16 +08:00
    wufeng
        1
    wufeng  
       2024-10-07 11:58:10 +08:00   1
    不好意思 高中已经毕业 20 年 题目已经看不懂了
    Sawyerhou
        2
    Sawyerhou  
       2024-10-07 14:35:20 +08:00
    提个比较傻的思路。

    以 G 为原点,HG 为 x 方向,CG 为 y 方向,FG 为 z 方向,建立坐标系
    不妨设正方体边长为 1 ,并对 OL,OM,ON 除以三者平方和进行归一化

    记平面法线方向为 n=(x,y,z)则
    cos<n,CG>=cos<(x,y,z),(0,0,1)>=OL
    cos<n,HG>=cos<(x,y,z),(1,0,0)>=ON
    cos<n,FG>=cos<(x,y,z),(0,1,0)>=OM
    解得 n=(ON,OM,OL)

    对于问 2 ,记 PCG 法线为 m=(x,y,z)
    cos<m,n>=cos<(x,y,z),(ON,OM,OL)>=0
    cos<m,CG>=cos<(x,y,z),(0,0,1)>=0
    解得 m=(OM,-ON,0)

    <PCG,ACG>=arccos(cos<m,(1,1,0)>)=arccos(OM-ON)

    其他问原理也都差不多
    Sawyerhou
        3
    Sawyerhou  
       2024-10-07 14:37:36 +08:00
    @Sawyerhou #2 更正倒数第二行
    <PCG,ACG>=arccos(cos<m,(1,1,0)>)=arccos(OM-ON)
    enjoying
        4
    enjoying  
    OP
       2024-10-07 17:52:19 +08:00
    第一问题证明就是用:"如果两个相交平面都垂直于第三个平面,那么他们的交线垂直于第三个平面。"
    本题中的三个平面为平面 X ,平面 CGOL ,平面 ABCD 。
    enjoying
        5
    enjoying  
    OP
       2024-10-08 13:38:16 +08:00
    第 3 个问题改一下:求∠LCP
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     5204 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 35ms UTC 08:38 PVG 16:38 LAX 00:38 JFK 03:38
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86