V2EX neopenx 的所有回复 第 1 页 / 共 2 页
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
V2EX    neopenx    全部回复第 1 页 / 共 2 页
回复总数  24
1  2  
2024-03-09 19:19:12 +08:00
回复了 wangbin11 创建的主题 程序员 你们有搞 gpu 算力平台的吗
ToC 做分布式算力,用户机器的稳定性和数据隐私都是问题。自己搞搞玩玩可以,出了事故就完蛋了
2024-01-26 13:38:47 +08:00
回复了 LeeReamond 创建的主题 Python Transformer 是不是缺乏跨维度关系捕捉能力?
@LeeReamond 并没有啥问题啊。你的维度困惑在于把 QK 理解成逐元素向量乘法了..上面一堆回答都歪了..
2024-01-26 10:31:29 +08:00
回复了 LeeReamond 创建的主题 Python Transformer 是不是缺乏跨维度关系捕捉能力?
你可能不熟悉矩阵乘法把。QK 的注意力矩阵乘法是[2,3]@[3, 2], 也就是做了 2x2 四次向量点积,每个点积都用到了全部三维。这是单头注意力情况。维度更高需要用多头减少每组点积向量的维度,避免参与的维度过多导致注意力不 diverse
2023-12-06 19:06:42 +08:00
回复了 Rorysky 创建的主题 Apple Apple 发布新的机器学习框架 MLX
看起来目前只是一个跑一些简单的 metal compute kernels 的练习作品,连 MPS routines 都没 dispatch
Python API 山寨 PyTorch 不说,还相当简陋。
2023-11-01 18:20:19 +08:00
回复了 oppurst 创建的主题 Apple M3 Max 的神经引擎是否已经不够看了?
ANE 需要走 CoreML 跑。18T 应该就是 FP16 的设计峰值。
要是通过 GPU 走 Metal 的话,满血 M2 Max 的 FP32 才 14T 。
苹果短期内应该不打算融合 ANE 和 GPU ,也就是维持 ANE 以低功耗优势,继续挤牙膏。
鬼知道几年后可以追平 3060 的 50T FP16 TensorFlops 设计峰值。
2023-08-04 11:25:50 +08:00
回复了 746970179 创建的主题 Apple 关于 mac 的内存的好奇
@iamqk apple silicon 的延迟确实比 X86 非统一大,M1 是 110ns ,没比 PS5 的 140ns 好到哪里去。高带宽牺牲延迟是很正常的
2023-08-04 10:34:52 +08:00
回复了 746970179 创建的主题 Apple 关于 mac 的内存的好奇
大于 100GB/s 以上的带宽基本是给 GPU 用的。通过 CPU 大量的 memcpy 基本很难跑到 100 以上。
但是对于 Metal 的 MTLBuffer ,就有足够大的 Blob 把带宽跑上去了。在 CPU 应用上和 X86 比没什么优势。
2023-07-26 17:08:27 +08:00
回复了 lrigi 创建的主题 MacBook Pro 搞 AI 的兄弟们都选的多大的内存? 32 还是 64?
@lrigi M2Max 只是 FP32 的 FLOPS 接近 V100 而已。FP16 的硬件加速在 ANE 上,做不了训练而且峰值还不如 FP32 。
Transformer 的实际需要空间复杂度有很多技术降下去,果子这点小聪明只能说聊胜于无
跑的大部分都是矩阵乘法,M2U 也就和 3060 五五开
2023-05-12 10:55:37 +08:00
回复了 wulili 创建的主题 程序员 AI 计算框架为啥不能统一一下,感觉大家都各玩各的
@MeePawn666 这个不仅仅 shader language 的 DSL 不统一问题,各类加速器的都是 ASIC, 都在自家芯片内塞私有硬件和指令集,所以即使有统一的 DSL ,也要根据不同硬件编译 N 个版本的 DSL ,最后搞得 release 啥都能跑的框架二进制有 10GB 以上,谁都不舒服
2023-05-12 10:47:53 +08:00
回复了 wulili 创建的主题 程序员 AI 计算框架为啥不能统一一下,感觉大家都各玩各的
@tyzandhr 去年 WWDC 苹果还真秀了下用雷电 4 连接 4 台 M1 Ultra 做数据并行训练
不过也只有 Ultra 级别的 FP32 算力才能摸到 3060 的屁股
2023-05-12 10:28:55 +08:00
回复了 wulili 创建的主题 程序员 AI 计算框架为啥不能统一一下,感觉大家都各玩各的
你要类比也应该类比到 shader 吧。
cuda/metal kernel 本质就是 shader ,你看游戏几十年了,不同 GPU 的 shader 很好统一么
基于 LLVM 可以对 GPU shader 做一个抽象,所以 AI compiler 现在也在干同样的事。
2023-04-06 12:59:34 +08:00
回复了 BrbiwsFtd9zDGZqB 创建的主题 程序员 Facebook 开源通用图像分割模型 Segment Anything
本质上是把 FAIR 之前的基于 RCNN 的实例感知工作整合起来了,带头人就是 RCNN 作者 Ross 。你可以把格点作为 prompt ,在仅提取一次的全图特征上无限制地做 query ,就有 Faster/Mask/KeyPoint R-CNN 了
@bleaker ANE 只能跑推理。训练要在 GPU 上跑 Metal/MPS 。搞笑的是 GPU 的 FP32/FP16 算力只有 Ultra 上才能超过 ANE 的 FP16 算力。所以用 AppleSilicon 做训练就是来搞笑的
M2 Max 的 training 算力等价于 3060 。洗洗睡吧。还不如买块 4090
你还是去看看 Ilya Sutskever 和老黄的谈话,当模型拟合的数据是世界的投影(World Projection)的时候,你就很难用简单 corner case 来测试是否是 AI 了。意识本身没什么意义,你只要维护一个持续观测预测的流水线就可以近似意识了。类 GPT 竞品基本上对答几次就开始暴力输出无意义的预测了,根本没法构建预测永动机
2023-02-27 16:58:32 +08:00
回复了 adonishong 创建的主题 MacBook Pro M2 Max(14) 对比 M1 Max(16) 的 pytorch 推理性能简测
@adonishong RDNA 游戏卡没有 TensorCore 对标单元,处境和果子类似,没啥用。你要用 FP16 只能买 CDNA 的数据中心卡,好像优化的还可以。不过 CDNA 肯定没 GeForce 划算,GeForce 现在砍掉的只有 PCIE/NVLINK P2P ,等于只禁掉你在数据中心的高速互联。
2023-02-27 13:22:13 +08:00
回复了 adonishong 创建的主题 MacBook Pro M2 Max(14) 对比 M1 Max(16) 的 pytorch 推理性能简测
这俩 GPU 的 FP32 Peak 本来就差不多。
MPS 的 Gemm 实现太差,你跑一下就知道大概只能到 65%的 peak 。
Transformer 的 90%计算量都在 Gemm 上。
cublas 的 Gemm 都优化多少年了,上 90%以上的 peak 非常简单。
就这一点上,苹果要用更高的设计峰值才能去打 N 卡。
你要是换 FP16 ,10 系后的卡大部分靠 TensorCore 就能把果子 GPU 计算打到自闭
2023-02-17 11:11:42 +08:00
回复了 athomas 创建的主题 程序员 什么配置的电脑能把 OpenAI 的 Whisper 跑快一点
MPS 默认跳过 intel 集显。所以你 100%是 CPU 在跑。
你换 M2 还不如去租 GPU ,M2 pro 的 MPS 性能也就 1060 水平,跑 Transformer 惨不忍睹
1  2  
关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     913 人在线   最高记录 6679       Select Language
创意工作者们的社区
World is powered by solitude
VERSION: 3.9.8.5 26ms UTC 22:21 PVG 06:21 LAX 14:21 JFK 17:21
Do have faith in what you're doing.
ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86